Constitutive Models for Rubber

Edited by
Al Dorfmann
Institute of Structural Engineering, University of Applied Sciences, Vienna, Austria

Alan Muhr
Tun Abdul Razak Research Centre, MRPRA, Brickendonbury, Hertford, United Kingdom
Table of contents

Foreword IX
Organisation XI

Constitutive and numerical modelling

Advanced FE analysis of elastomeric automobile components under realistic loading conditions
H. Menderes & A.W.A. Konter 3

Modelling of the thermo-mechanical material behaviour of rubber-like polymers
– Micromechanical motivation and numerical simulation
S. Reese & P. Wriggers 13

An energy-based model of the Mullins effect
R. W. Ogden & D. G. Roxburgh 23

Material law selection in the Finite Element simulation of rubber-like materials
and its practical application in the industrial design process
F. J. H. Peeters & M. Küssner 29

The limited static load in finite elasticity
I. A. Brigadnov 37

A strain energy function for filled and unfilled elastomers
M. H. B. M. Shariff 45

Experimental techniques

Application of flexible biaxial testing in the development of constitutive models
for elastomers
C. P. Buckley & D. M. Turner 59

Bi-axial experimental techniques highlighting the limitations of a strain-energy description
of rubber
H. R. Ahmadi, J. Gough, A. H. Muhr & A. G. Thomas 65

The need for equi-biaxial testing to determine elastomeric material properties
R. Johannknecht & S. Jerrams 73
Viscoelasticity

Constitutive model for a class of hyperelastic materials with embedded rheological properties 79
I.Dobovšek

Effect of liquids on the dynamic properties of carbon black filled natural rubber as a function of pre-strain 87
J.J.C.Busfield, C.Deeprasertkul & A.G.Thomas

A model of cooperative relaxation in finite viscoelasticity of amorphous polymers 95
A.D.Drozdov

Tyres and friction

A generalized orthotropic hyperelastic constitutive model for reinforced rubber-like materials 107
M.Itskov & Y.Basar

Modelling rolling friction of rubber for prediction of tyre behaviour 117
V.Dorsch, A.Becker & L.Vossen

Experimental characterisation of friction for FEA modelling for elastomers 123
J.R.Daley, D.Lam, D.J.Weale & M.V.Mercy

Physical parameters strain energy function for rubberlike materials 131
M.H.B.M.Shariff

Experimental and numerical investigation of the friction behavior of rubber blocks on concrete and ice surfaces 139
T.Huemer, J.Eberhardsteiner, W.N.Liu & H.A.Mang

Material characterisation of tire structure used in explicit time integration of differential equations of the rolling process 145
F.Böhm

Softening phenomena

A realistic elastic damage model for rubber 151
L.Nasdala, M.Kaliske, H.Rothert & A.Becker

Viscoelastic and elastoplastic damage formulations 159
M.Kaliske & H.Rothert

A non-Gaussian network alteration model 169
L.Ernst & E.G.Septanika

Experimental determination of model for liquid silicone rubber: Hyperelasticity and Mullins’ effect 181
A.H.Muhr, J.Gough & I.H.Gregory

Aspects of stress softening in filled rubbers incorporating residual strains 189
G.A.Holzapfel, M.Stadler & R.W.Ogden
Modelling inelastic rubber behavior under large deformations based on self-organizing linkage patterns
J. Ihlemann

Experimental and computational aspects of cavitation in natural rubber
S.L. Burtscher & A. Dorfmann

An advanced micro-mechanical model of hyperelasticity and stress softening of reinforced rubbers
M. Klüppel & J. Schramm

Applications

Finite-element-analyses of intervertebral discs: Recent advances in constitutive modelling
R. Eberlein, M. Fröhlich & E. M. Hasler

High Damping Laminated Rubber Bearings (HDLRBs): A simplified non linear model with exponential constitutive law – Model description and validation through experimental activities
A. Dusi, F. Bettinali, V. Rebecchi & G. Bonacina

Implementation and validation of hyperelastic finite element models of high damping rubber bearings
M. Forni, A. Martelli & A. Dusi

Application of fracture mechanics for the fatigue life prediction of carbon black filled elastomers
J. J. C. Busfield, A. G. Thomas & M. F. Ngah

Development of artificial elastomers and application to vibration attenuating measures for modern railway superstructures
D. Pichler & R. Zindler

Different numerical models for the hysteretic behaviour of HDRB’s on the dynamic response of base-isolated structures with lumped-mass models under seismic loading
J. Böhlter & Th. Baumann

Finite element analysis on bolster springs for metro railway vehicles
R. K. Luo, W. X. Wu & W. J. Mortel

Computational simulation of the vulcanization process in rubber profile production
M. André & P. Wriggers

Indentation of rubber sheets with spherical indentors
J. J. C. Busfield & A. G. Thomas

Styroflex® – The properties and applications of a new styrenic thermoplastic elastomer
J. R. Wünsch & K. Knoll

Experiences in the numerical computation of elastomers
D. Bartels & U. Freundt

Author index