1st International RILEM Symposium on Self-Compacting Concrete

Stockholm, Sweden
September 13-14, 1999

Edited by Å. Skarendahl and Ö. Petersson
Swedish Cement and Concrete Research Institute

RILEM Publications S.A.R.L.
The Publishing Company of RILEM
Contents

Preface XV
Membership XVI

PART 1 - KEYNOTE LECTURES

1 Self-compacting concrete. Development, present use and future 3
 H. OKAMURA and M. OUCHI
 Kochi University of Technology, Japan

2 SCC is an important step towards industrialisation of the building industry 15
 J. BYFORS
 NCC AB, Sweden

PART 2 - RHEOLOGY/WORKABILITY

3 Evaluation of flow of self-compacting concrete by visualization technique 25
 S. URANO¹, C. HASHIMOTO² and Y. TSUJI³
 1. Institute of Technology, Shimizu Corporation, Japan
 2. University of Tokushima, Japan
 3. Gumma University, Japan.

4 Three-dimensional discrete element simulation of rheology tests of self-compacting concrete 35
 M. A. NOOR¹ and T. UOMOTO²
 1. Institute of Industrial Science, University of Tokyo, Japan
 2. Center for Collaborative Research, University of Tokyo, Japan

5 Fine mortar rheology in mix design of SCC 47
 P. BILLBERG
 Swedish Cement and Concrete Research Institute, Sweden
6 Rheological approach to passing ability between reinforcing bars of self-compacting concrete
T. NOGUCHI, S. G. OH and F. TOMOSAWA
University of Tokyo, Japan

7 A flow analysis for self-compacting concrete
Y. MUROGA¹, T. OHSUGA¹, S. DATE¹ and A. HIRATA²
1. Ishikawajima Construction Materials Co. Ltd, Japan
2. Ishikawajima-Harima Heavy Industries Co, Ltd, Japan

8 Characterization of the rheological properties of cement paste for use in self-compacting concrete
W. SAAK¹, H. M. JENNINGS¹,² and S. P. SHAH²
1. Dept. of Materials Science and Engineering
2. Dept. of Civil Engineering
NSF Center for Advanced Cement-Based Materials, Northwestern University, Evanston, Illinois, USA

9 Rheology tests for self-compacting concrete – How useful are they for the design of concrete mix for full-scale production?
M. EMBORG
Betongindustri AB, Stockholm and Luleå University of Technology, Sweden

PART 3 - PROPERTIES

10 Properties of mortar for self-compacting concrete
P. L. J. DOMONE and J. JIN
University College London, United Kingdom

11 A simple evaluation method for interaction between coarse aggregate and mortar particles in self-compacting concrete
M. OUCHI¹ and Y. EDAMATSU²
1. Kochi University of Technology, Kochi, Japan
2. Sumitomo Osaka Cement Co. Ltd, Osaka, Japan

12 Comparative study on the induced hydration, drying and deformations of self-compacting and ordinary mortars
G. VILLAIN, V. BAROGHELE-BOUNY and C. KOUNKOU
Laboratoire des Ponts et Chaussées, Paris, France
13 Stability of self-consolidating concrete, advantages, and potential applications
K. H. KHAYAT1, C. HU2 and H. MONTY3
\textit{1. Université de Sherbrooke, Québec, Canada}
\textit{2. Lafarge Laboratoire Central de Recherche, St Quentin Fallavier, France}
\textit{3. Monsanto-Kelco, San Diego, CA, USA}

14 Self-compacting concrete stability control
F. CUSSIGH
GTM Construction, France

15 Study of self-compactability of high-fluidity concrete
H. FUGIWARA1 and S. NAGATAKI2
\textit{1. Cerefo Research, Japan}
\textit{2. Niigata University, Japan}

16 Microstructural features and related properties of self-compacting concrete
J. TRÄGÅRDH
Swedish Cement and Concrete Research Institute, Sweden

17 Chloride diffusivity of self-compacting concrete
L. TANG, A. ANDALEN, J. O. JOHANSSON and S. HJELM
SP Swedish National Testing and Research Institute, Sweden

18 Strength of hardened self-compacting concrete
J. C. GIBBS and W. ZHU
University of Paisley, Scotland, United Kingdom

19 Properties of SCC – Especially early age and long term shrinkage and salt frost resistance
H. E. GRAM1 and P. PIIPARINEN2
\textit{1. Cementa AB, Sweden}
\textit{2. Scancem Research AB, Sweden}

20 Drying shrinkage of self-compacting concrete containing milled limestone
V. K. BUI and D. MONTGOMERY
University of Wollongong, Australia
21 Creep, shrinkage and elastic modulus of self-compacting concrete
B. PERSSON
Lund Institute of Technology, Lund, Sweden

22 Comparative study on properties of self compacting and high
performance concrete used in precast construction
P. ROUGEAU¹, J. L. MAILLARD¹ and C. MARY-DIPPE²
1. CERIB, Epernon, France
2. CEBTP, St. Rémy-les-Chevreuse, France

23 Influence of constituents on the properties of self-compacting
repair materials
F. J. O'FLAHERTY and P. S. MANGAT
Sheffield Hallam University, England

24 Hardened SCC and its bond with reinforcement
M. SNOBI and P. J. M. BARTOS
ACM Advanced Concrete and Masonry Centre,
University of Paisley, Scotland

25 Structural response of self-consolidating concrete columns
K. H. KHAYAT, S. TREMBLAY and P. PAULTRE
University of Sherbrooke, Québec, Canada

PART 4 - MIX DESIGN

26 A rational mix-design method for self-compacting concrete
considering interaction between coarse aggregate and mortar
particles
Y. EDAMATSU¹, N. NISHIDA¹ and M. OUCHI²
1. Sumitomo Osaka Cement Co., Ltd, Osaka, Japan
2. Kochi University of Technology, Kochi, Japan

27 Optimization of self-compacting concrete thanks to packing
model
T. SEDRAN and F. DE LARRARD
Laboratoire Central de Ponts et Chaussées, Nantes, France
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Institution/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Investigation on blocking of self-compacting concrete with different maximum aggregate size and use of viscosity agent instead of filler</td>
<td>Ö. PETERSSON and P. BILLBERG</td>
<td>Swedish Cement and Concrete Research Institute, Sweden</td>
</tr>
<tr>
<td>29</td>
<td>Utility of statistical models in proportioning self-consolidating concrete</td>
<td>K. H. KHAYAT, A. GHEZAL and M. S. HADRICHE</td>
<td>Université de Sherbrooke, Québec, Canada</td>
</tr>
<tr>
<td>30</td>
<td>Toward mix design for rheology of self-compacting concrete</td>
<td>S. G. OH, T. NOGUCHI and F. TOMOSAWA</td>
<td>University of Tokyo, Japan</td>
</tr>
<tr>
<td>31</td>
<td>Mixture proportioning method for self-compacting high performance concrete with minimum paste volume</td>
<td>V. K. BUI and D. MONTGOMERY</td>
<td>University of Wollongong, Australia</td>
</tr>
<tr>
<td>32</td>
<td>Concrete mixture proportioning with optimal dry packing</td>
<td>T. T. ROSHAVELOV</td>
<td>Higher Institute of Construction Engineering, Sofia, Bulgaria</td>
</tr>
<tr>
<td>33</td>
<td>Design of self-compacting concrete for durable concrete structures</td>
<td>F. JACOBS and F. HUNKELER</td>
<td>TFB Technical Research and Consulting on Cement and Concrete, Switzerland</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PART 5 - CONSTITUENT MATERIALS IN SCC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Multi component polymer concrete admixtures</td>
<td>T. A. BÜRGE</td>
<td>Sika AG, Zürich, Switzerland</td>
</tr>
<tr>
<td>35</td>
<td>Performance of a new-developed powder polycarboxylic acid superplasticizer</td>
<td>K. TSUKADA, K. SOEDA, H. HAYASHI and H. ISOMURA</td>
<td>Taiheiyo Cement Corporation, Japan</td>
</tr>
</tbody>
</table>
36 Influence of temperature on the dispersibility of polycarboxylate type superplasticizer for highly fluid concrete
K. YAMADA¹, T. YANAGISAWA² and S. HANEHARA¹
1. Central Research Laboratory, Sakura, Taiheiyo Cement Corporation, Japan
2. Technical Research Institute, Maeda Corporation, Japan

37 Property of new polysaccharide derivative as a viscosity agent for self-compacting concrete
H. YAMAMURO
Kao Corporation, Japan

38 New admixture to self-compacting concrete
P. DAVOUST
Perstorp AB, Construction Chemicals, Sweden

39 Reduction of viscosity of concrete with modified lignosulphonate
K. REKNES
Borregaard Ind. Ltd, Ligno Tech, Norway

40 Shrinkage and shrinkage reduction of self-compacting concrete
F. J. WOMBACHER
Sika R & D, Zürich, Switzerland

41 The use of steel fibres in self-compacting concrete
P. GROTH¹ and D. NEMEGEER²
1. Luleå University of Technology, Sweden
2. Bekaert AS, Belgium

42 Testing and performance of fiber-reinforced self-consolidating concrete
K. H. KHAYAT and Y. ROUSSEL
Université de Sherbrooke, Québec, Canada

43 Effect of rheological parameters on self compactability of concrete containing various mineral admixtures
A. YAHIA, M. TANIMURA, A. SHIMABUKURO and Y. SHIMOYAMA
Taiheiyo Cement Corporation, Central Research Laboratory, Japan
44 Influence of microfillers on proportioning of mortar in self-compacting concrete
K. TAKADA¹, G. I. PELOVA² and J. C. WALRAVEN²
1. Kajima Technical Research Institute, Japan
2. Delft University of Technology, The Netherlands

45 A study of self-compacting HPC with superfine sand and pozzolanic additives
C. JIANXIONG, P. XINCHENG and H. YUBIN
Chongqing Jianzhu University, Chongqing, China

46 The effect of different additions on flowability of SCC
P. NISCHER
Research Institute of the Austrian Cement Industry, Austria

47 Studies on self-compacting high performance concrete with high volume mineral additives
W. FANG, C. JIANXIONG and Y. CHANGHUI
Chongqing Jianzhu University, Chongqing, China

48 Self compactability of fresh concrete with non-ferrous metal slag fine aggregates
M. SHOYA, M. ABA, S. SUGITA, Y. TSUKINAGA and K. TOKUHASHI
Hachinohe Institute of Technology, Japan

49 Energy modified cement in SCC
P. BILLBERG
Swedish Cement and Concrete Research Institute, Sweden

PART 6 - APPLICATIONS

50 Field applications of self-compacting concrete with advantageous performances
T. MIZOBUCHI, S. YANAI, K. TAKADA, N. SAKATA and Y. NOBUT
Kajima Technical Research Institute, Japan

51 Evaluation on the practicability of SCC
M. K. MAEDA, K. YAMADA and A. UCHIDA
Maeda Corporation, Japan
52 Application of high-strength self-compacting concrete to prestressed concrete outer tank for LNG storage
T. NISHIZAKI¹, F. KAMADA², R. CHIKAMATSU³ and H. KAWASHIMA⁴
1. Engineering Dept., Osaka Gas Co., Ltd, Osaka, Japan
2. Civil Engineering Technology Div., Obayashi Corp., Tokyo, Japan
3. Technical Research Institute, Obayashi Corp., Tokyo, Japan
4. Obayashi and Konoike J. V., Osaka, Japan

53 Full scale casting of bridges with self-compacting concrete
P. BILLBERG¹, Ö. PETERSSON¹ and T. ÖSTERBERG²
1. Swedish Cement and Concrete Research Institute, Sweden
2. Swedish National Road Administration, Sweden

54 Self-compacting concrete – Industrialised site cast concrete
M. GRAUERS
NCC AB, Sweden

55 Application of low shrinkage type self-compacting concrete to an advanced large water purification plant
R. CHIKAMATSU, C. SHINKAI and H. KUSHIGEMACHI
Obayashi Corporation, Osaka Prefectural Waterworks, Japan

56 SCC for tunnel-lining
V. WETZIG
Hagerbach Test Gallery Ltd., Switzerland

57 SCC tunnel applications: Cleuson Dixence project and Loetschberg basis tunnel, Switzerland
J. BOTTE¹, J. BURDIN² and M. ZERMATTEN³
1. EOS + BONNARD & GARDEL, Lausanne, Suisse
2. Consulting Engineer, Chambéry, France
3. BONNARD & GARDEL, Lausanne, Suisse

58 SCC and the new era for the precast concrete industry
H. W. BENNENK
Eindhoven University of Technology, The Netherlands
59 Development and usage of self-compacting concrete in precast concrete field
H. HUMEHARA¹, D. HAMADA², H. YAMAMURO² and S. OKA³
1. Nagoya Institute of Technology, Japan
2. Kao Corporation, Japan
3. Corporation Topcon, Japan

60 The use of SCC for precast elements
J. STEIGENBERGER
Research Institute of the Austrian Cement Industry, Austria

61 Full-scale tests for housing
L. SÖDERLIND
NCC, AB, Sweden

62 The use of SCC for building the millennium tower in Vienna
R. PICHLER
Research Institute of the Austrian Cement Industry, Austria

63 Production of self-compacting concrete for civil engineering – case studies
M. EMBORG and C. HEDIN
Betongindustri AB, Sweden

64 Experience from full scale production of steel fibre reinforced self-compacting concrete
J. GUSTAFSSON
Betongindustri AB, Sweden

65 A new approach to contract specifications for constructing durable marine structures using self-compacting concrete
S. R. CURTIS
Roads and Traffic Authority of New South Wales, Australia

66 Quality assurance for self-compacting concrete
L. G. TVIKSTA
NCC, AB, Sweden
AIJ recommended practice for high-fluidity concrete for building construction

F. TOMOSAWA, Y. MASUDA, I. IZUMI and M. HAYAKAWA

1. Dept. of Architecture, University of Tokyo, Japan
2. Dept. of Construction, University of Utsumomiya, Japan
3. Institute of Technology, Takenaka Corporation, Japan
4. Technology Research Center, Taisei Corporation, Japan