CONTENTS

VOLUME I—PROCESSING

EXTRUSION DIVISION

M1—Twin Extrusion-Reactive Extrusion

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymerization in a Twin Screw Extruder—Effect of Screw Configuration on MWD and Copolymer Content</td>
<td>2</td>
</tr>
<tr>
<td>J. Grenci, D. B. Todd, Polymer Processing Institute</td>
<td></td>
</tr>
<tr>
<td>Grafting Extrusion of Low Density Polyethylenes</td>
<td>7</td>
</tr>
<tr>
<td>C. Rosales, R. Perera, H. Rojas, Universidad Simón Bolívar</td>
<td></td>
</tr>
<tr>
<td>Mixing Performance of Twin Screw Extruders during Melt-Melt Blending</td>
<td>12</td>
</tr>
<tr>
<td>G. Shearer, C. Tzoganakis, University of Waterloo</td>
<td></td>
</tr>
<tr>
<td>Mixing Analysis of a Reactive Extrusion Process in a Co-Rotating Twin-Screw Extruder Element Channel</td>
<td>17</td>
</tr>
<tr>
<td>D. Strutt, C. Tzoganakis, T. A. Duever, University of Waterloo</td>
<td></td>
</tr>
<tr>
<td>Continuous Polymerization of Polyetheramide Tri-Block Copolymer in a Modular Intermeshing Counter-Rotating Twin Screw Extruder</td>
<td>22</td>
</tr>
<tr>
<td>B. H. Lee, J. L. White, University of Akron</td>
<td></td>
</tr>
</tbody>
</table>

M2—TAPPI

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Use of Polymer Processing Aids to Reduce Gel Formation in Polyolefin Plastomer Extrusion</td>
<td>28</td>
</tr>
<tr>
<td>S. S. Woods, S. E. Amos, Dyneon LLC</td>
<td></td>
</tr>
<tr>
<td>The Influence of Stress on Peel Strength of Acid Copolymers to Foil</td>
<td>34</td>
</tr>
<tr>
<td>B. A. Morris, DuPont Packaging and Industrial Polymers</td>
<td></td>
</tr>
<tr>
<td>A New High-Performance LLDPE for Blown Film Applications</td>
<td>41</td>
</tr>
<tr>
<td>H. Mavridis, Equistar Chemicals, LP</td>
<td></td>
</tr>
<tr>
<td>The Effect of Film Winding Tension and Melt Temperature on COF and Other Properties of PE Blown Film</td>
<td>46</td>
</tr>
<tr>
<td>B. H. Schumann, J. J. Wooster, The Dow Chemical Company</td>
<td></td>
</tr>
<tr>
<td>The Effects of Slip and Antifluff Additives on the Oxygen Transmission Rate of Highly Permeable Polyolefin Plastomer Films</td>
<td>52</td>
</tr>
<tr>
<td>J. J. Wooster, The Dow Chemical Company</td>
<td></td>
</tr>
</tbody>
</table>

M21—DIE

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of Stereolithography for Extrusion Dies</td>
<td>58</td>
</tr>
<tr>
<td>A. Munot, J. L. Mead, S. A. Orroth, R. G. Stacer, University of Massachusetts Lowell</td>
<td></td>
</tr>
<tr>
<td>Design and Optimization of Three Dimensional Extrusion Dies Using Adaptive Finite Element Method</td>
<td>63</td>
</tr>
<tr>
<td>L. G. Reifschneider, Illinois State University</td>
<td></td>
</tr>
<tr>
<td>Mathematical Modeling of Three-Dimensional Die Flows of Viscoplastic Fluids with Wall Slip</td>
<td>68</td>
</tr>
<tr>
<td>A. Lawal, S. Railkar, D. M. Kalyon, Stevens Institute of Technology</td>
<td></td>
</tr>
<tr>
<td>Extrusion of LLDPE through Polypropylene Coated Dies</td>
<td>73</td>
</tr>
<tr>
<td>G. Shearer, C. Tzoganakis, University of Waterloo</td>
<td></td>
</tr>
<tr>
<td>A Criterion for the Onset of Gross Melt Fracture of Polyolefins: Molecular Structure Effect</td>
<td>78</td>
</tr>
<tr>
<td>S. Kim, J. M. Dealy, McGill University</td>
<td></td>
</tr>
<tr>
<td>Effect of Elongational Viscosity on Die Design for Plastic Extrusion</td>
<td>83</td>
</tr>
<tr>
<td>M. Gupta, Michigan Technological University</td>
<td></td>
</tr>
</tbody>
</table>

ANTEC '99 / ix
M22—Medical

*The Blending and Coextrusion of Metallocene Catalysed Polyethylene in Blown Film Applications (368) ... 90
C. M. Beagan, G. M. McNally, W. R. Murphy, The Queen’s University of Belfast

*Maximize Barrier Performance of Reduced-Gauge HDPE Films (641) ... 95
W. G. Todd, W. R. Podborny, J. V. Krohn, Equistar Chemicals LP

*Medical Kink-Resistant Tubing (214) ... 101
S. Shang, E. Chim, T. Yang, L. Woo, Baxter Healthcare Corp.

*Manufacturing Close Tolerance Medical Tubing (177) ... 106
C. Sparacino, Davis-Standard Corporation

*Continuous Polymer Melt Filtration (578) ... 118
M. U. Gaul, Jr., Polymer Processing Associates, Inc.

T2—Single-Screw

Extrusion of Engineering Thermoplastic Polyurethanes (216) ... 124
T. A. Hogan, M. A. Spalding, K. S. Hyun, M. J. Hall, Dow Plastics

Processing Trends of Metallocene Linear Low Density Polyethylenes and Their Influence on Single Screw Design (334) ... 130
K. R. Slusarz, C. A. Ronaghan, J. P. Christiano, Davis-Standard Corporation

Extrusion Operation Window for Filled Metallocene Polyethylenes (610) ... 135
M. del Pilar Noriega, T. A. Osswald, University of Wisconsin-Madison
O. A. Estrada, ICIPC

Ultra High Speed Extrusion of Various Polymers (1178) ... 140
H. R. Sheth, HPM Corporation

Examination of Starve-Fed Single Screw Extrusion in Conventional and Barrier Feed Screws (97) ... 145
M. R. Thompson, G. Donoian, J. P. Christiano, Davis-Standard Corporation

T3—Mixing

A Quantitative Investigation of Mixing in a Miscible SAN/PMMA Blend (733) ... 152
H. E. Burch, C. E. Scott, Massachusetts Institute of Technology

Experimental Comparison of Floating Ring Mixing Devices (770) ... 157
J. A. Myers, Glycon
R. A. Barr, Barr Inc.
M. A. Spalding, K. R. Hughes, Dow Plastics

A New Dispersive and Distributive Static Mixer for the Compounding of Highly Viscous Materials (364) ... 162
T. Osswald, University of Wisconsin-Madison
C. Rauwendaal, Rauwendaal Extrusion Engineering, Inc.

Experimental Study of a New Dispersive Mixer (101) ... 167
C. Rauwendaal, Rauwendaal Extrusion Engineering, Inc.
A. Rios, T. Osswald, University of Wisconsin-Madison
P. Gramann, B. Davis, The Madison Group
M. del Pilar Noriega, O. A. Estrada, ICIPC

The Effect of Scale-Up on the Processing Behavior of a Blend Exhibiting Phase Inversion during Compounding (621) ... 177
R. Ratnagiri, C. E. Scott, Massachusetts Institute of Technology

T21—Single-Screw

A Melting Rate Model Based on Extrusion Data (129) ... 184
S. J. Derezinski, Eastman Kodak Company

The Effect of Flight Radii Size on the Performance of Single-Screw Extruders (371) ... 190
M. A. Spalding, J. Dooley, K. S. Hyun, Dow Plastics

*Present in a joint session.
Control of Melt Temperature on Single Screw Extruders (813) .. 195
E. L. Steward, American Kuhne Corporation

The Adjustable Grooved Feed Extruder (102) ... 200
C. Rauwendaal, Rauwendael Extrusion Engineering, Inc.
R. Sikora, Technical University Lublin

T22—Twin-Screw

Flow Patterns in Special Twin Screw Mixing Elements (256) ... 206
T. Brouwer, D. B. Todd, Polymer Processing Institute
L. P. B. M. Janssen, University of Groningen

Residence Time Analysis for Twin Screw Extruders (646) .. 211
J. Gao, G. C. Walsh, D. Bigio, R. M. Briber, University of Maryland
M. D. Wetzel, E. I. du Pont de Nemours & Company, Inc.

Velocity Distributions in the Nip and Translational Regions of a Co-Rotating Twin-Screw Extruder (856) ... 216
S. Bakalis, M. V. Karwe, Rutgers, The State University of New Jersey

Effect of Kneading Block Tip Clearance on Performance of Co-Rotating Twin-Screw Extruders (504) ... 220
G. S. Donoian, J. P. Christiano, Davis-Standard Corporation

New Twin Screw Element Design for Elastomer Compounding (961) 225
F. R. Burbank S. M. Jackson, Krupp Werner & Pfleiderer Corp.

Color Measurement Techniques for Rapid Determination of Residence Time Distributions (727) ... 230
F. Busby, K. R. Hughes, K. S. Hyun, Dow Plastics

W1—Modeling (Basic)

Bubble Dynamics in Viscous Shear Flows (463) ... 236
M. Favelukis, National University of Singapore

Lattice Boltzmann Simulations as a Tool to Examine Multiphase Flow Problems for Polymer Processing Applications (645) ... 240
A. J. Wagner, C. E. Scott, Massachusetts Institute of Technology

Novel BEM Simulation of Mixing in Polymer Flows Including Non-Linear Effects (442) 245
A. C. Rios, T. A. Osswald, University of Wisconsin-Madison

Modeling Extrusion Processability for Materials with Various Molecular Parameters (1034) ... 250
D. Nichetti, I. Manas-Zloczower, Case Western Reserve University

Simulation of Draw Resonance in Film Casting Using a Material Description of Motion (372) ... 255
S. Smith, D. Stolle, McMaster University

W1A—Tutorial-Film

The Design of Flat Extrusion Dies and Feedblocks (615) ... 262
W. A. Gifford, Extrusion Dies, Inc.

Cast Film (613) .. 264
J. Ivey, Black Clawson Converting Machinery LLC

Motors and Drives for Extrusion Applications (854) ... 268
W. A. Kramer, American Kuhne, Inc.

W19—Tutorial-Film

Blown Film Tutorial (616) .. 274
T. I. Butler, The Dow Chemical Company

Fundamentals of the Tenter Frame Process for Biaxially Oriented Film Manufacturing as Applied to Polypropylene Polyester and High Density Polyethylene (617) 281
E. M. Mount III, Mobil Chemical Company

Air Entrainment Effects in Plastic Film Handling and Winding—The State of the Art (614) 283
B. A. Feiertag, Oklahoma State University and Web Handling Associates, Inc.

Roll Design: A Review of the Basics (258) ... 304
R. Palmer, New Castle Industries, Inc.

W20—Modeling (Single and Twin)

Computer Simulation of Plastics Compounding Operations in Twin-Screw Extruders (123) ... 310
E. L. Canedo, PolyTech
3-D Analysis of Fully Flighted Screws of Co-Rotating Twin Screw Extruder (827) A. Lawal, S. Railkar, D. M. Kalyon, Stevens Institute of Technology

Analysis of Mixing in Co-Rotating Twin Screw Extruders through Numerical Simulation (354) Th. Avalosse, Y. Rubin, Polyflow S.A.

Fast Design of Mixing Sections by Means of Network Theory (397) J. Hennes, W. Michaeli, IKV

Numerical Investigation on Mixing in a Pin Mixing Section for Screw Extruders (1002) W. G. Yao, S. Tanifuji, Plamedia Research Corp.

Extrusion Design with the Carreau Model (17) J. T. Lindt, University of Pittsburgh

TH1—Twin-Screw Extruders

Transient Start-Up Flow in a Modular Co-Rotating Twin Screw Extruder (437) E.-K. Kim, J. L. White, University of Akron

Fill Length Determination for a Non-Intermeshing Twin-Screw Extruder (768) D. Tomayko, D. Knoeller, L. Ridzon, R. Mudalamane, D. Bigio, University of Maryland

A Comparative Study of Fiber Breakage in a Buss Kneader, Modular Co-Rotating and Counter-Rotating Twin Screw Extruders (439) K. Shon, J. L. White, University of Akron

Visual Research of Melting Mechanism of Polymer Pellets in Intermeshing Co-Rotating Twin-Screw Extrusion (911) L. Zhu, X. Geng, Beijing University of Chemical Technology

TH14—Film

Trade-Offs in Blown Film Processing-Structure-Property Behavior of LLDPE Type Resins from Chromium, Metallocone and Ziegler-Natta Catalysts (107) A. M. Sukhadia, Phillips Petroleum Company

Film Casting of a Low Density Polyethylene Melt (710) K. Canning, B. Bian, A. Co, University of Maine

“Single-Site” Catalyzed Polyolefin for Fresh-Cut Produce Packaging—A Comparison between Monoextruded Blends and Coextruded Film (117) V. Patel, S. Mehta, S. A. Orroth, S. P. McCarthy, University of Massachusetts Lowell

Batch and Continuous Processing of Protein Films (471) H. V. Pol, C. S. Cavin, A. A. Ogale, School of Chemical and Materials Engineering

Processing Variables and the Scaling Parameters in Blown Film Extrusion (968) T. H. Kwack, Union Carbide Corporation

INJECTION MOLDING DIVISION

M3—Novel Processes

Case Study for Multi-Shot (78) J. Hahn, MGS Enterprises, Inc.

Saving Costs and Time by Means of Gas-Assisted Powder Injection Molding (314) C. Hopmann, W. Michaeli, IKV

M4—General Topics

Productivity Evaluation with a New Stiffness-Based Ejection Criterion of Injection Molding (192) H. Xu, D. Kazmer, University of Massachusetts, Amherst
Simulation and Experimental Studies of a Non-Return Valve Performance during Injection Molding (495) .. 427
C. Zook, A. I. Isayev, University of Akron

Effects of Injection Parameters on Fiber Attrition and Mechanical Properties of Polystyrene Molded Parts (204) ... 432
S. R. Tremblay, P. G. Lafleur, Ecole Polytechnique de Montréal
A. Ait-Kadi, Université Laval

M5—Materials

Predicting Flow Length of Spiral Melt Flows in Injection Molds by a Semi-Empirical Model (35) .. 438
N. S. Rao, Plastics Solutions International
G. Schumacher, University of Karlsruhe
C. T. Ma, Nashua

The Effects of Process Conditions, Nominal Wall Thickness, and Flow Length on the Shrinkage Characteristics of Injection Molded Polypropylene (136) .. 443
P. M. Gipson, P. F. Grell, B. A. Salamon, The Dow Chemical Company

Microstructure Development during the Injection Moulding of PET/LCP Blends (343) .. 450
E. Turcott, K. T. Nguyen, A. Garcia-Rejon, National Research Council of Canada

M23—Novel Processes

The Effect of Rapid Prototype Tooling on Final Product Properties (362) .. 456
E. K. Dawson, J. D. Muzzy, Georgia Institute of Technology

Trouble Shooting Cavity to Cavity Variations in Muticavity Injection Molds (890) ... 461
J. Beaumont, J. Ralston, A. Shuttleworth, The Behrend College

Cavity Pressure Studies for Stereolithography Produced Tooling (746) .. 467
J. Dell'Arciprete, R. Malloy, S. McCarthy, University of Massachusetts Lowell

Pressure Flow in the Barrel: The Relationship of Fluid Elements in the Cavity to Original Barrel Locations (798) ... 472
L. R. Schmidt, LR Schmidt Associates

Injection Molding of Sub-μm Grating Optical Elements (1050) .. 476
R. Wimberger-Friedl, Philips Research Laboratories

Effect of the Skin/Core Ratio on the Flow Behaviour during Co-Injection Moulding (500) ... 481
A. Derdouri, A. Garcia-Rejon, K. T. Nguyen, Y. Simard, National Research Council of Canada
K. A. Koppi, B. A. Salamon, The Dow Chemical Company

M24—General Topics

Optimization of the Weld Line in Injection Molding via an Experimental Design Approach (554) .. 486
T. C. Chang, E. Faison III, Iowa State University

Optical Sensing of Thermoplastics Solidification in an Injection Molding Machine (619) .. 491
E. R. Domínguez, W. I. Patterson, M. R. Kamal, McGill University

Effect of Temperature Dependent Thermal Properties on the Accuracy of Simulation of Injection Molding Process (600) 496
L. Sridhar, K. A. Narh, New Jersey Institute of Technology

A Numerical Approach for Optical Characteristics of Injection-Molded Lens (626) ... 500
S. Y. Kim, M. H. Rim, W. S. Lim, W. Y. Kim, LG Electronics, Inc.

Study of the Influence of the Injection Molding Processing Parameters on Molded Part Properties Using the Full Factorial Design (38) .. 504
M. Rujnic-Sokele, I. Catic, University of Zagreb

Design Tools for Rapid Thermal Cycling (485) .. 509
X. Xu, E. Sachs, S. Allen, M. Cima, Massachusetts Institute of Technology

M25—General Topics

Nylon 6 in Thin-Wall Housings (393) ... 516
J. F. Stevenson, A. Dubin, AlliedSignal Inc.

Processing Characteristics of PSU/PC Blend Associated with Degradation in Injection Molding (525) .. 521
B. H. Lee, Fluoroware, Inc.

Integrating Thin Wall Molder’s Needs into Polymer Manufacturing (640) .. 526
W. G. Todd, H. K. Williams, D. L. Wise, Equistar Chemicals, LP
Analysis of Halo Effects on Injection Molded Parts (962) .. 532
A. Dharia, Solvay Engineered Polymers
Combining Liquid-Silicone-Rubbers with Thermoplastics to Rigid-Flexible Combinations
Using 2-Component Injection Molding (404) ... 539
C. Ronnewinkel, E. Haberstroh, IKV
Syndiotactic Polystyrene Can Help Solve the 3-Piece Material Selection Puzzle:
Properties, Processing, Cost (203) ... 545
W. R. Burk, The Dow Chemical Company

T4—Gas Assist

Vibrated Gas Assist Molding: Its Benefits in Injection Molding (222) 552
J. P. Ibar, EKNET Research
Moulded Part Design for the Gas Injection Technique (537) ... 556
H. Potente, H.-P. Heim, Universität-GH Paderborn
Three Dimensional Filling Analysis of the Gas-Assisted Injection Molding (416) 561
D. M. Gao, National Research Council of Canada
Integrated Simulations of Gas Injection Molding Process and Part Structural
Performance under a Unified CAE Model (52) ... 566
S.-C. Chen, S. Y. Hu, Y.-P. Chang, Chung Yuan University
Gas Assisted Injection Molding of a Vacuum Cleaner Body (406) 571
B. O. Rhee, H.-K. Ahn, K. D. Lee, B. K. Yu, Ajou University
C.-W. Son, Daewoo Electronics company

T5—CAE

The Dependence of Cooling Channels System Geometry Parameters on Product
Quality as a Result of Uniform Mold Cooling (318) .. 578
A. Bikas, A. Kanarachos, National Technical University of Athens
Effects of Process Conditions on Shrinkage and Warpage in the Injection Molding Process (351) 584
T. J. Wang, C-MOLD/AC Technology
C. K. Yoon, Exxon Chemical Company
Minimizing Part Sink Marks Using C-Mold and Genetic-Optimization Algorithm (219) 589
H. Ye, P. M. Leopold, Murray Inc.
Optimization of Injection-Molding Process with Genetic Algorithms (3) 594
H. Ye, Murray Inc.
K. K. Wang, Sibley School of Mechanical and Aerospace Engineering
Three-Dimensional Simulation of Plastic Molding Processes (593) 599
R. Han, M. Gupta, Michigan Technological University

T6—Process Control

Traditional Xbar Charts for PET Preform and Bottle Manufacture Reduce the
Effectiveness of the Industry’s SPC Efforts—Issues and Solutions (58) 606
S. W. Zagarola, Terra Firma International, Ltd.
An Integrated Adaptive Control for Injection Molding (80). .. 611
K. K. Wang, J. Zhou, Cornell University
Y. Sakurai, Moog Japan Co.
Process Monitoring and Optimisation in Injection Moulding with
the Aid of New Measuring Sensors (81) ... 616
E. Moritzer, M. Neumann, University of Essen
DOE & Decoupled Molding Part I: Process Centering and Validation
from the Plastic’s Point of View (331) ... 620
R. G. Launsby, Launsby Consulting
M. R. Groleau, R JG Technologies, Inc.
T. Wilmering, Excelerated Mold Group, Inc.
R. J. Groleau, R JG Associates, Inc.
DOE & Decoupled Molding Part II: Correlation of Cavity Pressure
with Part Characteristics for Automated Part Containment (332) 625
M. R. Groleau, R. J. Groleau, R JG Technologies, Inc.
R. G. Launsby, Launsby Consulting
W2—Process Control

Computing an Injection Fill Speed from a Relative Viscosity Curve (335) 632
J. R. Wareham, J. D. Ratzlaff, Phillips Chemical Company

Recent Advances in Ultrasonic Monitoring of the Injection Molding Process (516) 636
S.-S. L. Wen, McGraw University

Investigation of Cavity-to-Cavity Variations in Multi-Cavity Tools (939) 641
V. Natarajan, C. H. Chien, F. S. Lai, University of Massachusetts Lowell

Systemic Development Models of Polymer Mouldings and the Appropriate Injection Moulds (876) 646
D. Godec, I. Catic, I. Lončar, University of Zagreb

Automated Search of the Optimal Robust Injection Molding Design against Process Variation (230) 651
D. Yao, B. Kim, University of Massachusetts

W3—CAE

Numerical Simulation and Process Window Design of Injection/Compression Molding (360) 658
T. J. Wang, C-MOLD/AC Technology

A Web-Based Knowledge Management System for the Injection Molding Process (96) 665
L.-S. Turang, D. DeAugustine, C-MOLD

An Accurate Warpage Prediction for Injection Molded Part by Using Simulation Program (904) 670
S. Ni, Lexmark International, Inc.

Injection Mold’s Problems Solved by CAE Analysis (821) .. 675
F. A. Kalnin, G. P. Zluhan, Centro de Mecánica de Precisión de Joinville (CMPJ)

A Numerical Virtual Process Modeler Based on Computer Aided Engineering Software for Injection Molding (650) .. 680
P. J. Wang, J. M. Liang, National Tsing Hua University

W21—Process Control

Interactive Training in SPC in Injection Molding (100) ... 686
C. Rauwendaal, Rauwendaal Extrusion Engineering, Inc.

Yield Maximization in Injection Molding by the Virtual Search Method (185) 691
D. Yang, D. Hatch, D. Kazmer, K. Danai, University of Massachusetts Amherst

Design of a Data Acquisition System for Predictive Control of Melt Temperature (201) 696
R. Dubay, J. Beyea, G. Bendrich, University of New Brunswick

Closed Loop Fuzzy Control of Part Weight in Injection Molding of Liquid Silicone Rubber (LSR) Based on PVT-Behavior (252) ... 701
E. Henze, E. Haberstroh, IKV

A Comparison of Different Strategies for Injection Filling Velocity Control (321) 705
Y. Yang, F. Gao, The Hong Kong University of Science & Technology

In-situ Monitoring of Product Shrinkage during Injection Molding Using an Optical Sensor (729) 710
A. J. Bur, National Institute of Standards and Technology

C. L. Thomas, University of Utah

W2—General Topics

ISO/QS Process Certification: Measuring the Proper Variables (150) 716
B. Fierens, D. Fisher, M. Shade, Ashland Chemical Company

J. Bozzelli, IM Solutions Inc.

In-Mold Labeling for High Speed, Thin Wall Injection Molding (30) 718
G. Fong, Tradesco Mold Ltd.

Utilizing an Engineering Resin Supplier’s Technical Support (6) ... 723
F. C. Jaarsma, Ticona LLC

Dramatic Changes in Glass Filled Polyphenylene Sulfide (PPS) via Variations in Maximum Fill and Packing Pressures, Injection Rate and Melt Temperature (336) 728
J. D. Ratzlaff, J. R. Wareham, Phillips Chemical Company

Processing Effects on Hinge Life of Injection Molded Styrene-Butadiene Copolymers (625) 733
V. H. Rhodes, Phillips Chemical Company

Improvement of the Simulation of Shrinkage and Warpage by Characterizing the Material Behaviour More Exactly (358) .. 737
P. Niggemeier, W. Michaeli, IKV

ANTEC '99 / xv
W23—Process Control

Flat System and Non-Turbulent Flow Pin Point Tip—New Concepts (703) .. 744
E. L. Belous, Fast Heat Inc.

Comparison of Different Screw Design for Injection Moulding Machines (606) 749
N. Kudlik, Nestal Machinery Ltd.

Development of a Twin Screw Injection Molding Extruder (643) .. 754
D. Bigio, R. Mudadalam, D. Tomayko, University of Maryland
S. Zerafati, Elf Atochem

Injection Molding by Direct Compounding (843) .. 759
B. Klotz, Krauss-Maffei Kunststofftechnik

An Innovative Approach to Computer Controlled Continuous Injection Molding (965) 763
N. Madhusudan Rao, T. Tran, S. J. Turner, University of Southern Queensland

Process Analysis and Machine Technology for the Injection Molding of Microstructures (405) 768
A. Spennemann, W. Michaeli, IKV

TH2—Plastic Analysis

On-Line Monitoring of Polymer Orientation during Injection Molding (1041) 774
R. Edwards, C. L. Thomas, University of Utah
A. J. Bur, NIST

Eliminating Density and Heat Capacity Requirements in Transient Thermal Conductivity Measurements (379) ... 779
N. Mathis, Mathis Instruments Ltd.

The Effect of Injection Molding on the Load-Carrying Ability of Products with Holes (40) 784
M. J. M. van der Zet, A. J. Heidweiler, Delft University of Technology

Capturing PVT Behavior of Injection-Molded Parts Using Hybrid Methods (1042) 788
H. Lobo, T. Bethard, Datapoint Testing Services

Non-Isothermal Effects in Injection Molding of Rigid Fiber Suspensions (56) .. 794

TH3—Quality

Use of Non-Contact Scanning Technology as a Means to Reduce Product Development Lead Times (705) 802
R. P. Behm, J. J. Hahn, MGS Enterprises, Inc.

Injection Moulding In-Process Measurements of Batch to Batch Variation and Process Variable Influences in Polyamides (1155) ... 806
P. D. Coates, A. L. Kelly, M. Woodhead, A. J. Dawson, M. Martyn, N. Khoshoee, University of Bradford

Transfer Function Development for the Injection Molding of Optical Media (191) 810
D. Hatch, D. Kazmer, University of Massachusetts Amherst

M. Niemeyer, GE Plastics

Empirical Equations for Predicting Sink Mark Depth in a Rib-Reinforced Plastic Part (592) 815
L. Shi, M. Gupta, Michigan Technological University

Automating Online Quality Control by the Use of New Neural Network Algorithms and Neuro-Fuzzy Systems (251) ... 820
O. Schnerr-Häselbarth, W. Michaeli, IKV

THERMOFORMING DIVISION

M6—Thermoforming Technology

Finite Element Modeling of the Plug-Assisted Thermoforming Process (346) 826
J. F. Lappin, E. M. A. Harkin-Jones, P. J. Martin, The Queen's University of Belfast

A Unified Approach for Thermoforming Numerical Simulation (316) ... 831
M. Rachik, J. M. Roelandt, Université de Technologie de Compiègne/GSM

Numerical and Experimental Studies of 3-Dimensional Thermoforming Process (662) 836
G. J. Nam, J. W. Lee, Sogang University
K. H. Ahn, Cheil Industries Inc.

Optimization of Thermoforming (1146). ... 841
P. Novotný, P. Šáha, Tech. Univ. of Brno
K. Kouba, Accuform

Optimization of Thermoforming with Process Modelling (83) ... 844
R. DiRaddo, D. Laroche, A. Bendada, National Research Council of Canada
T. Ots, Quality Thermoform
M26—Thermoforming Technology

Single Cycle-Twin Sheet Thermoforming for Technical Precision Parts (31) .. 852
K. Teal, Cannon Shelley

Sheet Extrusion for Thermoformers (474) ... 856
W. B. Virginski, K. C. Barnwell, Davis-Standard Corporation

Influence of Extrusion Parameters on Polypropylene Sheet for Use in Thermoforming (348) 860
G. W. Harron, E. M. A. Harkin-Jones, P. J. Martin, The Queen's University of Belfast

Optimization of the Wall Thickness Distribution of Pharmaceutical Press-Through Blister (399) 865
J. Wolf, W. Michaeli, IKV

Shrinkage Study of Thermoformed Parts (189) ... 872
H. Xu, J. Wysocki, D. Kazmer, University of Massachusetts Amherst

Advances in Thermoforming through the Use of ESPOR, a Micro-Porous
Aluminum Mold Alloy (773) ... 878
R. L. Bowen, International Mold Steel, Inc.

Press Forming of Filled and Short Fiber Reinforced Nylon-6 (357) ... 880
Z. Xia, P. K. Mallick, University of Michigan-Dearborn

THERMOSET DIVISION

T8—Advances in Thermoset Technology

Thermosetting Resins from Vegetable Oils (272) ... 888
Z. S. Petrovic, A. Guo, R. Fuller, J. Javni, Pittsburg State University

Influence of CaCO₃ Content on the Stress-Strain and Creep Response of
Unsaturated Polyester (296) ... 892
R. P. Theriault, J. Kabelka, G. W. Ehrenstein, University of Erlangen-Nuremberg

The Role of Monomeric and Dimeric Oligomers of Methyl Ethyl Ketone Peroxide in the Cure
of Unsaturated Resin Formulations (612) ... 897
D. Nwoko, T. Pettijohn, Witco Corporation

A Bulk Modulus Model for an Epoxy + Glass Fiber Composite as a Function of Pressure
and Temperature (65) ... 900
A. S. de Vilchez, Johnson Matthey Advanced Circuits, Inc.

W. Brostow, P. Punchaipetch, S. Maswood, University of North Texas

T28—Advances in Epoxy Technology

Determining Etch Compensation Factors for Printed Circuit Boards (326) 906
A. DeRose, R. P. Theriault, T. A. Osswald, University of Wisconsin-Madison

J. M. Castro, The Ohio State University

Erasure Below the Glass Transition Temperature of the Effect
of Isothermal Physical Aging in a Fully Cured Epoxy/Amine Thermosetting System (11) 911
J. K. Lee, Kumoh National University of Technology

J. K. Gillham, Princeton University

Commercial Epoxy + Monomer Liquid Crystal Epoxy Blends: Compatibility and
Curing Kinetics (685) ... 916
P. Punchaipetch, V. Ambrogi, N. A. D'Souza, W. Brostow, University of North Texas

V. Ambrogi, University of Naples

The Effect of Molecular Weight Distribution on the Curing Reaction of Epoxies with Imidazoles (287) 921
L. Zhao, G. C. Martin, Syracuse University

Kinetics of Epoxy Curing in Composites Containing Glass Fibers or Glass Fibers
Commingled with Polypropylene (686) ... 925
P. Punchaipetch, J. Reed, W. Brostow, N. A. D'Souza, University of North Texas

A Study on the Cure of the Siloxane-Modified Epoxy Resins (529) 930
Y. Liu, G. C. Martin, Z. Meng, Syracuse University

Development of Underfilling Encapsulant Based on Ternary Systems of Benzoxazine,
Epoxy, and Phenolic Resins (1028) ... 935
S. Rimdusit, H. Ishida, Case Western Reserve University

Effect of the Addition of a Polycarbonate on the Cure of an Epoxy Thermoset System (456) 940
M. J. Amaral, A. Espejo, A. Gonzalez-Alvarez, M. Arellano, Universidad de Guadalajara

ANTEC '99 / xvii
W7—Broadening the Understanding of Thermoset Cure

The Measurement of Thermoset Cure Properties with a Novel Rheometer (668) ... 946
H. Pawlowski, X. Xu, Applied Technologies

A New Approach to Determining the Boundary between the Liquid and Gelatinous Zones in a Pultrusion Die (931) .. 951
S. Reymond, R. Boukhili, École Polytechnique de Montréal

Effect of Pulling Speed on the Sizes of the Liquid, Gel and Solid Zone during Thermoset Pultrusion (996) 956
A. Atarsia, R. Boukhili, École Polytechnique de Montréal

Cure Monitoring of Phenolic Resins Using Dynamic Rotational Rheometry (891) .. 961
J. L. Rose, M. T. Shaw, University of Connecticut

A Thermo-Viscoelastic Model for the Modulus of Epoxy during Cure (429) .. 966
S. L. Simon, O. Sindt, University of Pittsburgh
G. B. McKenna, NIST

BLOW MOLDING DIVISION

T10—Computer Aided Engineering and Analysis for Blow Molding

Reduced Time to Market Using Blow Molding Simulation Software (323) .. 972
C. S. Randall, D. P. Prior, Mattel Operations at Fisher-Price, Inc.

3D FEM Simulation of the Stretch Blow Molding Process with a Two-Stage Material Model (649) .. 977
S. Wang, A. Makinouchi, The Institute of Physical and Chemical Research
M. Okamoto, T. Kotaka, Toyota Technological Institute
M. Maeshima, N. Ibe, Aoki Technical Laboratory, Inc.
N. Nakagawa, Institute of Industrial Science of the University of Tokyo

Modeling and Experimental Validation of the Stretch Blow Molding of PET (238) .. 982
L. Martin, D. Stracovsky, Husky Injection Molding Systems
D. Laroche, A. Bardetti, R. Ben-Yedder, R. DiRaddo, National Research Council of Canada

Computer Aided Design of Preforms for Injection Stretch Blow Moulding (261) .. 988
G. H. Menary, C. G. Armstrong, The Queen’s University of Belfast

Influence of the HDPE Grade on the Blow Moulding of a Bottle: A Numerical Investigation (5) .. 993
B. Debbaud, Polyflow S.A.
G. Rekers, DSM Research

T30—Processing and Materials for Blow Molding

New Methodology for Determining the Blow Mouldability of Engineering Resins for Automotive Applications (341) .. 1000
A. Garcia-Rejon, M. Carmel, National Research Council of Canada
R. Ramanathan, The Dow Chemical Company

Effects of Molecular Structure on the Rheology and Processability of High Density Polyethylene Blow Molding Resins (325) .. 1005
A. B. Ariawan, S. G. Hatzikiriakos, The University of British Columbia
H. Hay, S. K. Goyal, NOVA Research and Technology Corporation

Hot Fillable Containers Manufactured from New Polymeric Compounds Based on PET/PEN Copolymers and Blends (34) .. 1010
A. Ophir, S. Kenig, Israel Plastics and Rubber Center
A. Shai, Y. Barka’ai, LOG-Plastic Products Company

Ultrasonic Thickness Gauge for Multi-Layer Plastic Fuel Tanks (444) .. 1017
M. Nulman, G. Mozurkewich, Ford Motor Company
B. Khaykin, Candid Logic, Inc.

Ultrasonic Monitoring of the Flow in a Co-Extrusion Blow Molding Die (605) .. 1020
T.-F. Chen, D. Ramos-França, McGill University

Hot Plate Welding of Blow Molded Parts: Influence of the Blow Molding Process on Weld Strength (855) .. 1025
H. Potente, B. Krell, F. Reckert, Universität GH-Paderborn

Injection/Stretch Blow Moulding of PET/LCP Blends for Better Product Performance (342) .. 1029
A. Garcia-Rejon, K. T. Nguyen, National Research Council of Canada
W. Michaeli, L. Morich, G. Schmidt, IKV
R. Lusignea, Superex Polymer, Inc.

Coextrusion Blow Molding with LCP (874) .. 1034
R. W. Lusignea, Superex Polymer, Inc.

xviii / ANTEC '99
MOLD MAKING/MOLD DESIGN DIVISION

T33—Mold Design

Part and Mold Design Targeted to Optimized Production (707) .. 1040
A. Bernhardt, Plastics & Computer, Inc.
G. Bertacchi, Plastics & Computer International
Proper Utilization of Porous Mold Steel to Solve Venting Problems (790) 1045
R. Bowen, International Mold Steel, Inc.
Maintaining the Thermal Balance Core to Cavity: The Key to Cooling Efficiency (461) 1048
P. Engelmann, E. Dawkins, Western Michigan University
M. Monfore, Ralston Foods
New Uses for Electroless Nickel in Mold Building and Design (42) ... 1053
F. T. Gerson, F. T. Gerson Limited
Decision Diagrams Aided Conceptual Mold Design (29) ... 1058
D. Godec, I. Catic, D. Perkovic, University of Zagreb
Mold Wear vs. Wall Thickness: Critical Information for Thin Wall Molding (534) 1063
K. Hayden, P. Engelmann, Western Michigan University
R. Dealey, Dealey's Mold Engineering
M. Monfore, Ralston Foods
Utilization of Dynamic Feed Control in Family Tools (547) ... 1068
M. Doyle, A. Bernier, K. Camille, Dynisco Hot Runner Systems
D. Kazmer, University of Massachusetts Amherst
Autonomous Arrangement of Cooling Channels Layout in Injection Molding (847) 1073
H. Koresawa, H. Suzuki, Kyushu Institute of Technology

W11—High Velocity Machining

Benefits of High Speed Machining Technology to Plastic Injection Mold Builders (519) 1080
T. F. Jones, Methods West Machine Tools, Inc.
High Speed Toolholders (247) ... 1085
W. R. Keefe, Command Tooling Systems
Using Traditional Machine Shops versus CNC Machining Centers (27) ... 1091
J. H. Arnold, ACES Development
B. J. Arnold-Feret, Prototyping and Rapid Tooling Services

W30—Rapid Tooling

High Thermal Conductivity Rapid Dies: Backfilled and Coated Dies (598) 1096
R. Gnegy, A. Ogale, Clemson University
Rapid Tooling for Injection Moulding Using Fused Deposition Modelling (163) 1100
S. H. Masood, W. Q. Song, Industrial Research Institute Swinburne
J. H. Hodgkin, Council of Scientific and Industrial Research Organisation
C. Friedl, Moldflow Pty Ltd.
Rapid Tooling: A Study of Different Cooling Techniques for Mold Inserts Used in the Direct AIM (ACES Injection Molding) Process (747) ... 1105
S. Saurkar, R. Malloy, S. McCarthy, University of Massachusetts Lowell
Creation of Plastic Prototypes and Molded Plastic Parts via Selective Laser Sintering (602) 1109
C. Nelson, DTM Corporation
Laser Sintered Short Run Tooling for Injection Molding (23) ... 1114
B. J. Arnold-Feret, Prototyping and Rapid Tooling Services (PaRTS)

APPLIED RHEOLOGY DIVISION

M36—Advances in Experimental Methods I

Squeeze Flow Rheometer (823) .. 1120
A. Lawal, D. M. Kalyon, Stevens Institute of Technology
A Nonlinear Fluid Standard Reference Material: Progress Report (797) ... 1125
C. R. Schultheisz, G. B. McKenna, National Institute of Standards and Technology
Assessment of Particle Migration Effects in Capillary Rheometry of Filled Polymers (828) 1130
M. Allende, D. M. Kalyon, Stevens Institute of Technology
Ultrasonic Investigation of Process Variation during Single Screw Extrusion and Injection Moulding: Real Time Detection of Temperature Profile and Material Degradation (1154) 1137
T15—Advances in Experimental Methods II

A Practical Approach to Polymer Rheology for Quality Control (499) ... 1162
D. E. De Laney, J. F. Reilly, Dynisco Polymer Test, Inc.

Observation of 3-D Effects in Flow Visualisation of Polymer Melts (1153) .. 1167
P. D. Coates, M. Kamala, M. Martyn, University of Bradford
M. Matsuoka, Asahi Chemical Industries Company Ltd.

Membrane-Inflation Rheometry—A New Way of Measuring Biaxial Deformation
Behaviour at Process-Relevant Conditions (395) .. 1172
C. Detrois, E. Haberstroh, IKV

Predicting Pressure Drop in Mixed Shear and Extensional Flow Using Converging Cone Capillary Rheology (740) ... 1177
N. Malwitz, N. S. Ramesh, Sealed Air Corporation

Analysis of Polymer Flow Near Glass Transition Temperature (370) ... 1183
Y.-J. Juang, L. J. Lee, K. W. Koelling, The Ohio State University

T37—Melt Rheology

Flow-Induced Morphological Changes in Poly(styrene-co-maleic anhydride)/Poly(methyl methacrylate) Blends (20) 1190
D. Chopra, D. Vlassopoulos, Institute of Electronic Structure & Laser
D. Chopra, S. G. Hatzikiriakos, The University of British Columbia

Viscoelasticity of Polyethylenes Produced with Single Site Metallocene Catalysis (826) ... 1195
E. Kucukpinar, D. M. Kalyon, P. P. Tong, Stevens Institute of Technology

Rheology of Metallocene-Catalyzed Polyethylenes—The Effects of Branching (708) ... 1200
S. E. B. Wadud, D. G. Baird, Virginia Polytechnic Institute and State University

Relationship between Structure and Rheology of Constrained Geometry Catalyzed and Metallocene Polyethylenes (661) 1205
P. Wood-Adams, J. M. Dealy, McGill University

Melt Rheology and Processability of Conventional and Metallocene Polyethylenes (57) .. 1210
C. K. Chai, BP Chemicals S.N.C.

Coextruded Flow in Partially Miscible Systems (953) ... 1215
K. R. Sharma, University of Maryland; Independent Institute of Technology

The Effect of the Boron Nitride Type and Concentration on the Rheology and Processability of Molten Polymers (21) 1223
F. Yip, E. E. Rosenbaum, S. G. Hatzikiriakos, The University of British Columbia

An Optical Determination of Melt Viscosity through Particle Kinematics (788) .. 1228
D. W. Riley, Extrusion Engineers
A. H. Schall, Dynisco Polymer Test, Inc.

W16—Rheological Modeling

Concentration and Temperature Effects on the Flow of Polymeric Suspensions (162) .. 1232
F. Soltani, Stevens Institute of Technology
U. Yilmazer, New Jersey Institute of Technology

Modeling of Rheological Behavior of Immiscible Polymer Blends Undergoing High Deformation Flows (455) 1237
M. Aouina, M. Bousmina, R. Guenette, Laval University
Comparison of Various Viscosity Models for PS/CO2 Solutions (944) .. 1241
M. Lee, C. Tzoganakis, University of Waterloo
A New Formulation and Interpretation of Shear-Thinning of Polymeric Melts. Effect of Temperature, Strain Rate and Frequency (224) .. 1247
J. P. Ibar, EKNET Research
Entrance Flow Simulation Using Elongational Properties of Plastics (594) .. 1254
M. Gupta, Michigan Technological University

W35—Process Rheology

Linear Viscoelastic Properties of Polymeric Suspensions (427) .. 1260
G. Bayram, U. Yilmazer, Middle East Technical University
Flow Fields of Polymer Melt Flowing through Wedge Converging Channel (902) .. 1265
H.-X. Huang, South China University of Technology
Flow Instability Reduction of PP through Blending of EVA (759) .. 1270
N. Montoya, J. D. Sierra, Instituto de Capacitacion e Investigacion del Plastic0 y del Cauch0
M. del Pilar Noriega, T. A. Osswald, University of Wisconsin-Madison
Determination of Optimum Extrusion Processing Conditions for Multilayer, Low
Emission Plastic Fuel Line Systems Using Dual Capillary Rheometer Techniques (751) .. 1275
G. M. McNally, D. M. Smyth, The Queen’s University of Belfast
Studies of Sharkskin Melt Fracture Using a Model Polymer (805) .. 1280
Y. W. Inn, R. J. Fisher, M. T. Shaw, University of Connecticut
Rheology of Hard-Metal Carbide Compounds (1072) .. 1283
B. Hausnerová, P. Sáha, Technical University of Brno
Polymers of Controllable Rheology—Volume Viscosity and Implications
for Modeling of Processing (681) .. 1287
M. Heneczkowski, Rzeszów University of Technology
A. P. Plöchocki, Polymer PLUS Lab
The Influence of Polymer Rheology on Bubble Penetration in Gas-Assisted Injection Molding (845) .. 1291
V. Gauri, K. W. Koelting, The Ohio State University

TH11—General Session

Rheological Study of Soy Protein-Based PRF Wood Adhesives (570) .. 1298
J. D. Clay, B. Vijayendran, J. Moon, Battelle Memorial Institute
Positive and Negative Electrorheological Effect of Poly(methyl methacrylate)
Dispersions Stabilized by the Block Copolymer Steric Stabilizer (1073) .. 1302
V. Pavlinek, P. Sáha, Technical University of Brno
O. Quadrat, J. Stejskal, Academy of Sciences of the Czech Republic
TLCP Droplet Dynamics and Their Role in Viscosity Reduction (576) .. 1305
C. Whitehouse, P. Gao, Hong Kong University of Science and Technology
Temperature and Molecular Weight Dependence of Viscosity Revisited:
New Formulations for Rheology (223) .. 1310
J. P. Ibar, EKNET Research

JOINING OF PLASTICS AND COMPOSITES DIVISION

W17—Composite Joining

Fractal Description of Interlaminar Contact Development during Thermoplastic
Composites Processing (206) .. 1316
F. Yang, R. Pitchumani, University of Connecticut
Glass/Epoxy Interphase Response under High Loading Rates (934) .. 1321
M. Tanoglu, G. R. Palmese, J. W. Gillespie, Jr., University of Delaware
S. H. McKnight, Aberdeen Proving Ground
Time Dependent Prestress Force of Threaded Joints in Glass Fiber Reinforced Polyamide
at Elevated Temperatures (297) .. 1327
A. Tome, G. W. Ehrenstein, University of Erlangen-Nuremberg
Investigation of a Thin-Walled Thermoplastic Metal Hybrid (299) .. 1332
G. Zhao, G. W. Ehrenstein, University of Erlangen-Nuremberg

ANTEC ’99 / xxi
The Use of Chemical Coupling Agents to Improve the Performance of Polymer Bonded Nd-Fe-B Magnets (480) 1337
J. Xiao, H. S. Kim, J. Otaigbe, T. Tacke, Iowa State University of Science and Technology

W36—Vibration Welding

Biaxial Vibration Welding of Polypropylene (298) 1344
J. Vetter, G. W. Ehrenstein, University of Erlangen-Nuremberg
Joining of Nylon Based Plastic Components—Vibration and Hot Plate Welding Technologies (878) 1349
V. A. Kagan, AlliedSignal Plastics
Structure/Property Relationships in Polyetheretherketone Vibration Welds (819) 1360
S. M. Stevens, TWI
An Application Comparison of Orbital and Linear Vibration Welding of Thermoplastics (589) 1365
D. A. Grewell, Branson Ultrasonics Corporation
A. Benatar, The Ohio State University
A Process Comparison of Orbital and Linear Vibration Welding of Thermoplastics (1027) 1370
D. A. Grewell, Branson Ultrasonics Corporation
A. Benatar, The Ohio State University

TH12—Hot Plated/Heated Tool Welding

A New Hypothesis to Describe the Acting Mechanisms in a Welded Joint of Semi-Crystalline Thermoplastics (114) 1376
Ch. Bonten, University of Essen
Hot Plate Welding of Polypropylene and Talc Reinforced Polypropylene Composites (1071) 1381
C.-Y. Wu, B. Poopat, A. Benatar, The Ohio State University
J. B. Park, Ford Motor Company
Optimization of Contact Hot Plate Welding of HDPE (1070) 1386
B. Poopat, C.-Y. Wu, A. Benatar, The Ohio State University
J. B. Park, Ford Motor Company
Comparison of the Morphologies of Hot-Tool and Vibration Welds of Thermoplastics (818) 1391
V. K. Stokes, GE Corporate Research and Development
Orientation Effects on the Weldability of Polypropylene Strapping Tape (1023) 1395
M. J. Oliveira, Universidade do Minho
D. A. Hemsley, Polymer Microscopy Services

TH20—Laser/Infrared and Adhesives Joining

Weld Strength Behavior of Laser Butt Welds (706) 1402
H. Potente, F. Becker, University of Paderborn
Laser Beam Welding of Plastic Micro Parts (234) 1406
H. Klein, E. Haberstroh, IKV
Applications with Infrared Welding of Thermoplastics (590) 1411
D. A. Grewell, Branson Ultrasonics Corporation
Rapid Heating and Curing of Structural Adhesives by Infrared and Radio Frequency (1069) 1416
K. M. Kwan, C. Y. Wu, A. Benatar, The Ohio State University
Rapid Adhesives Bonding: Kinetic or Process Control? (128) 1422
G. W. Ritter, Edison Welding Institute

ROTATIONAL MOLDING DIVISION

M18—Rotational Molding I

Polymer Melt Formation and Densification in Rotational Molding (344) 1428
M. Kontopoulou, E. Takács, J. Vlachopoulos, McMaster University
Bubble Removal in Rotational Molding (586) 1433
G. Gogos, University of Nebraska-Lincoln
Computer Simulation of the Rotational Moulding of Plastics (573) 1441
E. J. Wright, R. J. Crawford, The Queen’s University of Belfast
Combined Effect of Polymer Sintering and Heat Transfer in Rotational Molding (289) 1446
C. T. Bellehumeur, University of Calgary

M38—Rotational Molding II

A Comparison between Forced Air Convection Heating and Direct Electrical Heating of Moulds in Rotational Moulding (574) 1452
<table>
<thead>
<tr>
<th>Paper Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison of Dry Blending-Based and Melt Compounding-Based Rotomolding</td>
<td>M. J. Wright, R. J. Crawford, The Queen's University of Belfast</td>
</tr>
<tr>
<td>Production of Electrically Conducting Plastics at Reduced Carbon Black Concentrations by Three-Dimensional Chaotic Mixing (179)</td>
<td>R. I. Danescu, D. A. Zumbrunnen, Clemson University</td>
</tr>
<tr>
<td>Microwave and Optical Applications of Metallic Conductive Polymers (780)</td>
<td>W. Olmedo, P. Buvat, P. Hourquebie, F. Lubrano, Commissariat à l’Energie Atomique</td>
</tr>
<tr>
<td>Structure Property Correlations in a New Rigid Rod Luminescent Conjugated Polymer, Polypyridine (1048)</td>
<td>A. P. Monkman, L. E. Horsburgh, M. E. Vaschetto, P. D. Hatton, University of Durham</td>
</tr>
<tr>
<td>Structural Implications of Morphology on the Electrical and Mechanical Properties of Inherently Conductive Polymers (1181)</td>
<td>H. D. Burrows, Universidade de Coimbra</td>
</tr>
<tr>
<td>Structural Implications of Morphology on the Electrical and Mechanical Properties of Inherently Conductive Polymers (1181)</td>
<td>W. Brown, University of Linkoping</td>
</tr>
<tr>
<td>Structural Implications of Morphology on the Electrical and Mechanical Properties of Inherently Conductive Polymers (1181)</td>
<td>L. Pettersson, University of Uppsala</td>
</tr>
<tr>
<td>dc Conductivity and Thermopower of Polyaniline Films (1180)</td>
<td>R. V. Gregory, Clemson University</td>
</tr>
<tr>
<td>dc Conductivity and Thermopower of Polyaniline Films (1180)</td>
<td>K. Eapprasertsak, R. V. Gregory, G. X. Tessema, Clemson University</td>
</tr>
<tr>
<td>The Use of Conducting Polymer Composites in Thermoplastics for Tuning Surface Resistivity (382)</td>
<td>S. J. Dahman, RTP Company</td>
</tr>
<tr>
<td>The Analytical Models for the Warpage of Integrated Circuit Devices (893)</td>
<td>J. Avlyanov, Eeonyx Corporation</td>
</tr>
<tr>
<td>Advances in Thermoplastic Encapsulation of Electrical/Electronic Components (718)</td>
<td>W.-R. Jong, M.-L. Chang, Chung-Yuan Christian University</td>
</tr>
<tr>
<td>Long-Time Behaviour of Soldered Plastics (295)</td>
<td>S. Pongratz, G. W. Ehrenstein, University of Erlangen-Nuremberg</td>
</tr>
<tr>
<td>Advances in Thermoplastic Encapsulation of Electrical/Electronic Components (718)</td>
<td>T. D. Boyer, M. W. Wichmann, DuPont Engineering Polymers</td>
</tr>
</tbody>
</table>

VOLUME II—MATERIALS

ELECTRICAL AND ELECTRONIC DIVISION

<table>
<thead>
<tr>
<th>Paper Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-Time Behaviour of Soldered Plastics (295)</td>
<td>S. Pongratz, G. W. Ehrenstein, University of Erlangen-Nuremberg</td>
</tr>
<tr>
<td>Advances in Thermoplastic Encapsulation of Electrical/Electronic Components (718)</td>
<td>T. D. Boyer, M. W. Wichmann, DuPont Engineering Polymers</td>
</tr>
</tbody>
</table>