Proceedings of the 17th International Modal Analysis Conference

FEBRUARY 8-11, 1999
HYATT ORLANDO HOTEL
KISSIMMEE, FLORIDA

TECHNICAL PROGRAM CHAIR:
Alfred L. Wicks, Virginia Polytechnic Institute and State University
Dominick J. DeMichele, Honorary Technical Chair

SOCIETY FOR EXPERIMENTAL MECHANICS, INC.:
Kristin L. MacDonald, Executive Director
Katherine M. Ramsay, Conference Manager

Organized By:
SOCIETY FOR EXPERIMENTAL MECHANICS, INC.
Bethel, Connecticut 06801
TABLE OF CONTENTS

1. Vibration Characteristics and Performance of Building Floors

Developed by: A. Pavic, University of Sheffield

Floor Vibrations: The Human Tolerance Side of the Equation, #352 ... 1
 T.M. Murray, Virginia Polytechnic Institute and State University

Dynamic FE Modeling of a Multi-story Car Park Verified by Modal Testing, #354 7
 P. Reynolds, A. Pavic, P. Waldron, University of Sheffield

Modal Testing of a Post-tensioned Concrete Model Floor Slab, #355 ... 14
 M.S. Williams, S. Falati, University of Oxford

The Dynamic Behavior of an Armored Vehicle Launched Bridge, #183 ... 21
 S.H. Petro, S.E. Chen, S. Venkatappa, H. GangaRao, West Virginia University;
 A. Culkin, U.S. Army Tank-Automotive R&D & Engineering Center

2 Modal Based Structural Monitoring Using In-operation System Identification I

Developed by: E. Balmès, École Centrale Paris and H. Van der Auweraer, LMS International

Applications of Structural Model Identification During Normal Operating Conditions:
An Overview of the EUREKA Project SINOPSIS, #366 ... 27
 H. Van der Auweraer, L. Hermans, LMS International

On The Application of a Subspace-based Fault Detection Method, #368 ... 35
 L. Mevel, M. Basseville, A. Benveniste, M. Goursat, M. Abdelghani, IRISA-INRIA;
 L. Hermans, LMS International

Health Monitoring and Detection of a Fatigue Problem of a Sports Car, #369 .. 42
 L. Hermans, H. Van der Auweraer, LMS International; L. Mevel, IRISA-INRIA

Modal Parameter Extraction Using Natural Excitation Response Data, #133 ... 49
 L. Mevel, T. Carne, Sandia National Laboratories

3. Aircraft/Aerospace

A Combined Testing Approach for Aerospace Hardware, #102 ... 56
 J.W. Sills Jr., Lockheed Martin Technical Operations; C.R. Voorhees, Lockheed Martin
 Missiles and Space CPC

Free Vibration of Doubly Curved Composite Honeycomb Rectangular Sandwich Panels, #14 65
 P.R. Cunningham, R.G. White, University of Southampton

Aircraft Vibration Alleviation with Active Control, #232 ... 72
 W.G. Luber, J. Becker, Daimler-Benz Aerospace AG
In-flight Modal Testing and Analysis of a Helicopter, #129
L. Hermans, H. Van der Auweraer, LMS International; A. Hatami,
J.E. Cooper, University of Manchester; T. Uhl, W. Lisowski, University of Mining and Metallurgy; A. Wasilak, PZL Swidnik SA

Non-linear Modal Analysis Applied to an Industrial Structure, #412
C. Gibert, F. Thouverez, L. Jézéquel, École Centrale de Lyon

4. Analytical Methods I

The Development of Machine-tool Force Reconstruction and Wear Detection, #216
W.J. Braun, M.H. Miller, J.F. Schultze, Michigan Technological University

Continuous Wavelet Transform Analysis of Acoustic Emission Signals, #265
A. Munoz-Najar, J. Hashemi, Texas Tech University

Modeling Dynamic Response of Stressed Structures, #92
P.D. Greening, N.A.J. Lieven, University of Bristol

Seismic Response of Soil - Structure Systems in the Valley of Mexico, #42
M.J. Ramírez, Instituto Mexicano del Petróleo

5. Experimental Techniques I

Monitoring Deaerator Stresses During a Transient in a Thermoelectric Power Plant, #72
N.S. Maia, Centro Federal de Educação Tecnológica de Minas Gerais;
T.R. Mansur, Comissão Nacional de Energia Nuclear (CNEN); E.B. Medeiros, Universidade Federal de Minas Gerais

Comparison of Some Moment Mobility Measuring Methods, #117
L. Ivarsson, M.A. Sanderson, Chalmers University of Technology

Effect of Holding on the Normal Modes of an Instrumented Violin Bow, #24
G. Bissinger, K. Ye, East Carolina University

Modeling of Dynamic Behavior Resulting from Residual Stresses, #94
N.A.J. Lieven, P.D. Greening, University of Bristol

Transducer Inertia and Stinger Stiffness Effects on FRF Measurements, #19
K.G. McConnell, Iowa State University of Science and Technology;
P. Cappa, Universita Degli Studi di Roma "La Sapienza"

6. Structural Response Control of Civil Structures I

Developed by: A.K. Agrawal, The City College of the City University of New York

Effects of Damping Mechanisms on the Seismic Response of Isolated Structures, #357
S.P. Chang, N. Makris, University of California, Berkeley

Identification of Structures Using General Input Data, #358
7. Damping

Finite Element Models with Viscoelastic Damping, #209 .. 181
M.I. Friswell, University of Wales Swansea; D.J. Inman, Virginia Polytechnic Institute
and State University

Optimization of Dynamic Vibration Absorbers Over a Frequency Band, #108 188
D.A. Rade, V. Steffen, Jr., Federal University of Uberlândia

A Test Validated Model of Plates with Constrained Viscoelastic Materials, #96 194
A.S. Plouin, E. Balmès, École Centrale Paris

The Effect of the Clamping Force on the Dynamic Behavior of a Stator Core, #165 201
M. Dias Jr., State University of Campinas

Theoretical Analysis of Ring Damped Railway Wheels, #66 .. 208
I. López, J.M. Busturia, J. Viñolas, Centro de Estudios e Investigaciones
Técnicas de Gipuzkoa

Experimental, Theoretical, and Numerical Modal Analysis of a Damped Portable-grinder Disk, #263 .. 215
A. Farina, R. Garziera, S. Rainieri, University of Parma

8. Model Based Structural Monitoring Using In-operation System Identification II

Developed by: E. Balmès, École Centrale Paris and H. Van der Auweraer, LMS International

Performance of Output-only Identification Algorithms for Modal Analysis of Aircraft Structures, #371 ... 224
M. Abdelghani, IRISA-INRIA; M. Goursat, INRIA; T. Biolchini, Sopemea;
L. Hermans, H. Van der Auweraer, LMS International

Stochastic System Identification: Uncertainty of the Estimated Modal Parameters, #116 231
B. Peeters, G. De Roeck, Katholieke Universiteit Leuven; P. Andersen, Aalborg University

On-line Damage Assessment Using Operating Deflection Shapes, #135 238
R. Pascual, J.C. Golinval, M. Razeto, University of Liège

Transfer Function Optimization Based on Subspace Identification Methods, #372 244
S. De Schepper, P. Van Overschee, B. De Moor, Katholieke Universiteit Leuven
Assessment of Subspace Fault Detection Algorithms on a Realistic Simulator-based Example, #370 ... 249
M. Abdelghani, IRISA-INRIA; M. Basseville, IRISA/CNRS; A. Benveniste,
L. Mevel, IRISA/INRIA; E. Balmès, École Centrale Paris; L. Hermans, H. Van der Auweraer,
LMS International

9. Rotating Machinery I

Developed by: G. Kirk, Virginia Polytechnic Institute and State University

Utilizing Dynamic Support Stiffness for Improved Rotordynamic Calculations, #314 256
J.C. Nicholas, Rotating Machinery Technology, Inc.

Modal Testing of Rotating Machinery while it is Operating, #315 ... 263
W.D. Marscher, Mechanical Solutions, Inc.

Bearing Test Rig Dynamics Problem Identification and Model Tuning, #316 270
E.E. Swanson, Mohawk Innovative Technology, Inc.; R.G. Kirk, Virginia Polytechnic Institute and State University

Laser Vibrometry System for Rotating Bladed Disks, #317 ... 277
R.A. Lomenzo, A.J. Barker, A.L. Wicks, Virginia Polytechnic Institute and State University

Experimental Study of a Fluid Film Bearing with a Floating Ring, #318 283
A. Petchenev, D.E. Bently, A. Muszynska, P. Goldman, Bently Rotor Dynamics Research Corporation

Transient Modal Analysis of Nonlinear Rotor-bearing Systems, #319 .. 290
R.W. Armentrout, E.J. Gunter, RODYN Vibration Analysis, Inc.

Experiments on the Dynamics of a Rubber Ring Seal, #91 .. 297
M. Amabili, G. Colombo, E. Prati, University of Parma

Motion and Vibration Control of a Flexible Structure, #260 .. 302
P. De Fonseca, H. Van Brussel, P. Sas, Katholieke Universiteit Leuven

10. System Identification I

Generation of Input Forcing Functions Through the Use of Measured Response and System Transfer Relations, #38 .. 309
P. Avitabile, F. Piergentili, University of Massachusetts Lowell;
K. Lown, SUN Microsystems, Inc.

Demonstration of Multiple Degree of Freedom Nonlinear System Identification Using Time and Frequency Domain Methods, #299 .. 315
D.E. Adams, R.J. Allemang, University of Cincinnati

Estimation of Modal Parameters and Their Uncertainties, #308 .. 323
P. Andersen, R. Brincker, Aalborg University

ARMA Models in Modal Space, #309 .. 330
R. Brincker, P. Andersen, Aalborg University

Free-free Modal Parameters Based on Testing in Flexible Support Configuration, #220 335
Y. Soucy, Canadian Space Agency; J.L. Humar, Carleton University
Finite Element Implementation of Linear Modification Method for Local Structural Modification, #188 .. 342
 T. Li, J. He, Victoria University of Technology

Modal Analysis of Structures with Frequency Dependent Properties, #111 .. 349
 M. Rades, Universitatea Politehnica Bucuresti

 S. Johansson, T.L. Lagö, I. Claesson, University of Karlskrona/Ronneby

11. Automotive

A Method for Conducting Validation Testing on Polyamide Engine Components, #120 363
 R. Capitani, M. Pierini, University of Florence; S. Massimo, Magneti Marelli S.p.A.

Smoothing the Path to Market: Considering NVH Up Front, #158... 368
 T.H. Drinan, A.K. Kennedy, Delphi Automotive Systems Saginaw Steering Systems

Reducing NVH Analysis Burden Using Automated Multi-level Substructuring, #164 372
 J.K. Bennighof, M.F. Kaplan, M.B. Muller, University of Texas at Austin

A Disciplined Approach for Instrument Panel Squeak & Rattle Prevention, #269.................................. 378
 F. Kavarana, B. Rediers, Defiance-MIRA; J. Samuelsson, G. Lagerberg, Volvo Car Corporation

Study of Experimental Modal Analysis on Tires, #222 ... 385
 D.H. Guan, Tsinghua University; L.H. Yam, Hong Kong Polytechnic University;
 M.P. Mignolet, Arizona State University; Y.Y. Li, Hong Kong Polytechnic University

Time-Frequency Analysis of Automobile Road Data, #192... 391
 M. French, Lear Corporation; P. Loughlin, University of Pittsburgh;
 L. Cohen, City University of New York, Hunter College; F. Cakrak, University of Pittsburgh

Sound Measurements Using a Large Microphone Array, #413 ... 397
 M. Winberg, T.L. Lagö, I. Claesson, C. Brandel, University of Karlskrona/Ronneby

Noise Path Analysis - A Tool for Reducing Testing Time, #286 .. 401
 P. Glibert, N.B. Møller, Brüel & Kjær

12. Structural Response Control of Civil Structures II

Developed by: A.K. Agrawal, The City College of the City University of New York

Application of Magnetorheological Dampers to Seismically Excited Structures, #361 410
 S.J. Dyke, F. Yi, S. Frech, Washington University; J.D. Carlson, Lord Corporation

Semiactive Damping of Stay Cables: A Preliminary Study, #362 .. 417
 E.A. Johnson, B.F. Spencer, Jr., University of Notre Dame; Y. Fujino, University of Tokyo

Active Control of a Communication Tower in Nanjing, China, #363 ... 424
 R.J. Helgeson, University of Tennessee at Martin; A.M. Reinhorn, T.T. Soong, State University of New York at Buffalo
Non-proportional Damping and Semi-active Control, #69 .. 431
N.S. Doke, H.P. Gavin, Duke University

A Semi-active Stiffness Damper for Vibration Control of Civil Engineering Structures, #364 437
J.N. Yang, University of California, Irvine; A.K. Agrawal, City College of the City
University of New York; J.H. Kim, University of California, Irvine

Experimental Verification of Active Control for a Seismic-excited Full-scaled Building, #365 444
C.H. Loh, P.Y. Lin, N.H. Chung, National Taiwan University

Structure Borne Noise of Trains in New Underground Station of Brussels Airport, #154 451
P. Vanhonacker, Dynamic Engineering/D2S International nv

Finite Element Model Updating of a Damaged Structure, #417 ... 457
J.M.W. Brownjohn, P. Xia, Nanyang Technological University

13. Dynamics of Pipeline

Developed by: M.E. Martinez, PDVSA Intevep

Evaluation of Stresses in Piping Systems Subjected to Unspecified Random Excitation, #328 463
A.N. Abdel-Hamid, The American University in Cairo; W.A. Farahat, Massachusetts Institute of Technology

Model Validation of an Aerospace Structure, #329 ... 470
N. Imamovic, D.J. Ewins, Imperial College of Science, Technology & Medicine

Experimental Analysis and Parametric Updating of Dynamic Behavior of Piping System
Having Unknown Boundary Conditions, #330 ... 475
S. Frikha, University of Paris 6; G. Coffignal, LM2S - ENSAM Paris; M. Gaudin, EDF-DER

Damage Identification on Piping Systems Using On-line Monitoring of Dynamic Properties, #331 .. 482
C.J. Kriel, P.S. Heyns, University of Pretoria

On Methods and Solutions for Diminishing Pipeline Vibration Levels, #332 489
T. Cioara, University "Politechnica" Timisoara

Fluid-structure-interaction with the Boundary Element Method, #251 496
B. Nolte, University of the Federal Armed Forces Hamburg; L. Gaul, University of Stuttgart

14A. Dynamics of Sports Equipment

Developed by: C.E. Knight, Virginia Polytechnic Institute and State University

The Dynamics of a Golf Club, #313 ... 503
A.L. Wicks, C.E. Knight, P. Braunwart, J. Neighbors, Virginia Polytechnic Institute
and State University

Golf Swing 'Signatures' on a Mockup Ball-striking Machine, #404 .. 509
C.E. Knight, R.G. Leonard, J. Neighbors, A.L. Wicks, Virginia Polytechnic Institute
and State University

Dynamic Characterization and Comparison of Golf Clubs, #156 ... 513
R.C. Merkel, The Modal Shop, Inc.; T. Blough, Royal Precision Golf Corp.
14B. Testing Techniques

New Developments in Multi-channel Test Systems, #391 .. 518
 R.W. Bono, M.J. Dillon, K.B. Gatzwiller, The Modal Shop, Inc.;
 D.L. Brown, University of Cincinnati

A Framework for Smart Transducer Interface Systems, #389 .. 525
 M.I. Schiefer, M.J. Lally, The Modal Shop, Inc.

Networkable Distributed Digital Accelerometers for Aerospace and Civil Applications, #390 530
 Research Center

15. Experimental Techniques II

Piezoelectric Strain Sensor, #55 .. 537
 J.J. Dosch, PCB Piezotronics, Inc.

The Development of Piezoelectric Accelerometers Using Finite Element Analysis, #65 543
 B. Liu, Q. Yao, B. Kriegbaum, Brüel & Kjær Sound Vibration Measurement A/S

Estimating Vibrational Energy Flow in Plates Using an Autoregressive Technique, #101 547
 M.L. Spisak, Allied Signal, Inc.; H.A. Evensen, Michigan Technological University

Some Comments on Digital Integration to Measure Displacements Using Accelerometers, #130 554
 J.G.T. Ribeiro, Military Institute of Engineering; J.L.F. Freire, J.T.P. de Castro,
 Catholic University of Rio de Janeiro

High-energy Modal Excitation Technique Utilizing Powder-actuated Impact Tool, #1 560
 M.S. Berman, T.H. Li, U.S. Army Research Laboratory

Accelerometer Selection for and Application to Modal Testing, #11 ... 566
 P.L. Walter, Endevco Corp./Texas Christian University

Updating Finite Element Model Using Test Data, #256 ... 573
 L. Wei, China North Vehicle Research Institute

16. Damage Detection/Infrastructure

A Pattern Recognition Approach for Damage Localization Using Incomplete Measurements, #95 579
 F.P. Lopez, D.C. Zimmerman, University of Houston

An Experimental Study of Damage Detection Using Modal, Strain, and Ritz Properties, #54 586
 D.C. Zimmerman, G.H. James, III, University of Houston; T.T. Cao, NASA Johnson
 Space Center

Damage Detection Comparison Between Damage Index Method and ARMA Method, #172 593
 G.V. Garcia, New Mexico State University; R. Osegueda, D. Meza, University of
 Texas at El Paso

Damage Identification with Linear Discriminant Operators, #200 ... 599
 C.R. Farrar, D.A. Nix, T. Duffey, Los Alamos National Laboratory;
 P.J. Cornwell, Rose-Hulman Institute of Technology;
 G.C. Pardoen, University of California, Irvine
A Review of Methods for Developing Accelerated Testing Criteria, #201 .. 608
 C.R. Farrar, Los Alamos National Laboratory; T.A. Duffey, Consulting Engineer;
 P.J. Cornwell, Rose-Hulman Institute of Technology; M.T. Bement, Texas A&M University

Application of Ritz Vectors to Damage Detection for a Grid-type Bridge Model, #81 615
 H. Sohn, K.H. Law, Stanford University

The Influence of Noise in FRF Based Damage Detection Techniques: an Initial Study, #407 622
 M.L.M. Duarte, R.R.S. Cypriano, Federal University of Minas Gerais

17. Analytical Methods/Updating

Sensors, Degrees of Freedom, and Generalized Modeshape Expansion Methods, #8 628
 E. Balmès, École Centrale Paris

Iterative Method for Combined Mode Shape Expansion and Parameter Updating, #99 635
 D. Maus, University of Kaiserslautern; H. Wittig, ZPT Saar ev.

Target Mode Selection Based on Load Indicators, #106 .. 642
 Y.T. Chung, The Boeing Company

On the Natural Frequencies and Antiresonances of Modified Structures, #294 648
 J.E. Mottershead, The University of Liverpool

Frequency Response Functions and Finite Element Equations with Rigid-body Constraints, and Their Application in Model Updating, #295 ... 654
 M.I. Friswell, University of Wales Swansea; J.E. Mottershead, University of Liverpool

Using Modeling & Identification to Improve Copying Accuracy of the Copying System, #415 660
 Y. Huang, H. Lu, Fuzhou University

18. Laser Vibrometry and Applications I

Developed by: E.P. Tomasini, University of Ancona

Localizing Structural Damage Using Structural Intensity Divergence Plots, #167 664
 J.M.C. Dos Santos, J.R.F. Arruda, R.M. da Cruz, State University of Campinas

Novel Single-beam Vector Velocity Vibrometer for Modal Analysis, #381 ... 670
 M.B. Klein, G.D. Bacher, Lasson Technologies

Analysis of Vibration Behavior and Defects with the Laser-scanning Vibrometer, #382 674
 L. Zipser, H. Franke, University of Applied Sciences Dresden

Modeling of Directional Characteristic of Ultrasonic Radiator by Data of Holographic Interferogram, #380 .. 680
 V. Minialga, Kaunas University of Technology

An Investigation of the Use of Wavelets in Vibration Applications, #383 ... 684
 G.D. Catalano, United States Military Academy

Non-invasive Measurements of Structural Damage by Laser Scanning Vibrometer:
An Experimental Comparison Among Different Exciters, #302 .. 692
 P. Castellini, E. Esposito, F. Miandro, N. Paone, C. Santolini, E.P. Tomasini, University of Ancona
19. Dynamics of Bridges

Developed by: A. Cunha, University of Porto

Modal Identification and Correlation with Finite Element Parameters of Vasco da Gama Bridge, #334 ... 705
 A. Cunha, E. Caetano, R. Calçada, R. Delgado, University of Porto

Modal Analysis from Ambient Vibration Survey of Bridges: LNEC Experience, #335 ... 712
 J. Rodrigues, A. Campos-Costa, LNEC-National Laboratory for Civil Engineering

Wind Response of Long-span Bridges: In-situ Measurements and Modal Analysis, #336 ... 719
 D. Delaunay, G. Grillaud, J. Biétrix, C. Sacré, Centre Scientifique et Technique du Bâtiment

Dynamic Bridge Behavior Under Traffic, #337 ... 726
 B. Hoffmeister, G. Sedlacek, Institute of Steel Construction

Dynamic Loads for Steel Girder Bridges, #28 ... 731
 A.S. Nowak, University of Michigan; S. Kim, Taegu University;
 M.M. Szerszen, University of Michigan

Fuzzy Logic Control of Cable-stayed Bridges in the Presence of Seismic Excitation, #356 ... 738
 M.E. Magaña, Oregon State University; J.J Rодellar, Universitat Politecnica de Catalunya

Field Test to Determine Frequencies of Bridge Stay Cables, #36 ... 745
 S.W. Smith, M.L. Johnson, University of Kentucky

Diagnosis of Reinforced Concrete Bridges by Means of Dynamic Testings, #137 ... 752
 P.A.O. Almeida, P.B. Fusco, E. Penner, University of São Paulo

20. Analytical Methods II

Evaluation of MPLM Design and Mission 6A Coupled Loads Analyses, #34 .. 758
 P.S. Bookout, E. Ricks, NASA Marshall Space Flight Center

Using Distributed Modifications to Change the Dynamic Behavior of Structures, #31 ... 763
 W. D'Ambrogio, University of L'Aquila; A. Sestieri, University of Rome "La Sapienza"

Dynamic Expansion of Frequency Response Functions, #35 ... 769
 F. Piergentili, P. Avitabile, J. O'Callahan, University of Massachusetts Lowell

Use of Perturbation Analysis for Complex Modes, #63 ... 779
 A.W. Lees, University of Wales, Swansea

Comparison of Vectors and Quantification of Their Complexity, #73 ... 785
 G. Lallement, University of Franche-Comté; J. Kozanek, Academy of Sciences of the Czech Republic
Damage Identification in Structural Joints Using Generic Joint Elements, #217 ... 792
D. Wang, University of Arizona; M.I. Friswell, University of Wales, Swansea; P.E. Nikravesh, University of Arizona; E.Y. Kuo, Ford Motor Company

Impacts on Rotating Beams, #266 .. 799
S. Abrate, Southern Illinois University at Carbondale

Free Vibration of Composite Plates and Identification of Elastic Properties, #267 806
S. Abrate, M. Perry, Southern Illinois University at Carbondale

21. Modal Parameter Identification I

The SMAC Modal Parameter Extraction Package, #105 ... 812
R.L. Mayes, S.E. Klenke, Sandia National Laboratories

Evolving Autonomous Modal Parameter Estimation, #53 .. 819
K.S. Chhipwadia, D.C. Zimmerman, G.H. James III, University of Houston

Modal Testing of a Bladed Disk, #9 .. 826
J.J. Hollkamp, R.W. Gordon, Air Force Research Laboratory

Application of a Differencing to Frequency Domain Parameter Estimation Algorithms, #77 833
T.M. Dahling, Orbital Sciences Corporation; R.J. Allemang, A.W. Phillips, University of Cincinnati

Application of Autonomous Modal Identification to Traditional and Ambient Data Sets, #141 840
G.H. James III, D.C. Zimmerman, K.S. Chhipwadia, University of Houston

Modal Deflation Procedure for Parameter Estimation, #175 ... 846
C.Y. Shih, The Boeing Company

Using Cyclic Averaging With Impact Testing, #396 .. 850
W.A. Fladung, A.T. Zucker, A.W. Phillips, R.J. Allemang, University of Cincinnati

Optimal Sensor Placement for Modal Parameter Identification Using Signal Subspace Correlation Technique, #254 ... 854
A.P. Cherng, National I-Lan Institute of Technology

Using Intelligent Gas to Identify Local Modal Parameters of Large Complex Structure, #218 862
Z. Qian, L. Dong, P. Feng, Zhe Jiang University

22. Damage Detection/Large Structures

Damage Detection Using 2-D Strain Energy Distribution and Scanning Laser, #182 869
S.E. Chen, S. Venkatappa, S. Petro, H. GangaRao, West Virginia University

Detection of Damage in Axial (Membrane) Systems, #15 .. 876
T.A. Duffey, Los Alamos National Laboratory-Consulting Engineer; W.E. Baker, University of New Mexico; C.R. Farrar, Los Alamos National Laboratory; W.H. Rhee, Texas Tech University

Application of Two Damage Detection Techniques to an Offshore Platform, #233 882
R. Ruotolo, C. Surace, Politecnico di Torino; K. Worden, University of Sheffield
23. Model Updating & Correlation

Faster, Easier Finite Element Model Reduction, #173 .. 922
T.A. Deiters, Structural Dynamics Research Corporation;
K.S. Smith, Alliance Spacesystems Inc.

A Comparison of Finite Element Model Error Localization Methods, #115 929
A. Larsson, T. Abrahamsson, Chalmers University of Technology

Modal Analysis for Finite Element Updating, #264 .. 936
Y.G. Tsuei, C. C. Day, National Cheng Kung University

FE-Model Correlation of a Helicopter Using Ground Test Results, #131 940
T. Uhl, W. Bochniak, W. Lisowski, University of Mining and Metallurgy; L. Hermans,
H. Van der Auweraer, LMS International; J. Malecki, PZL WSK Swidnik

Dynamic Testing and Correlation of a Frustum, #184 ... 947
M.A. Kaiser, J.N. Howard, J.D. Neighbors, Virginia Polytechnic Institute and State University

Input Force Estimation Using an Inverse Structural Filter, #225 954
A.D. Steltzner, D.C. Kammer, University of Wisconsin-Madison

Applying Transfer Path Analysis to Large Home Appliances, #157 961
C.D. Van Karsen, G. Gwaltney, J. Blough, Michigan Technological University

Experimental Analysis of the Dynamic Behavior of a Turbomachine Foundation Structure, #159 ... 966
M. Dias Jr., K.L. Cavalca, State University of Campinas

24. Laser Vibrometry and Applications II

Developed by: E.P. Tomasini, University of Ancona

Rapid Beam Load Capacity Assessment Using Dynamic Measurements, #211 973
M.R. Chowdhury, U.S. Army Engineer Waterways Experiment Station

Measuring Area Mode Shapes with a Scanning Laser Doppler Vibrometer, #384 980
A.B. Stanbridge, M. Martarelli, D.J. Ewins, Imperial College of Science,
Technology and Medicine
25. System Identification to Monitor Civil Engineering Structures I

Developed by: G. de Roeck, Katholieke Universiteit Leuven

Z24 Bridge Damage Detection Tests, #338
C. Krämer, C.A.M. de Smet, EMPA; G. De Roeck, Katholieke Universiteit Leuven

Comparison of Ambient and Forced Vibration Testing of Civil Engineering Structures, #346
C. Krämer, C.A.M. de Smet, EMPA; B. Peeters, Katholieke Universiteit Leuven

Comparison of System Identification Methods Using Ambient Bridge Test Data, #340
P. Andersen, R. Brincker, Aalborg University; B. Peeters, G. De Roeck, Katholieke Universiteit Leuven; L. Hermans, LMS International; C. Krämer, EMPA

FE-Modeling of RC Structures within the SIMCES Project, #342
R.G. Flesch, B. Stebernjak, B. Freytag, Graz University of Technology; J. Maeck, Katholieke Universiteit Leuven; S. Olia, EMPA

Output-only Modal Analysis: Development of a GUI for MATLAB, #392
B. Peeters, B. Van den Branden, A. Laquière, G. De Roeck, Katholieke Universiteit Leuven

26. Excitation Techniques of Civil Structures

Developed by: J.N. Howard, Virginia Polytechnic Institute and State University

Inducing Dynamic Responses in Concrete Dams, #322
Z.H. Duron, Harvey Mudd College

Excitation Methods for Bridge Structures, #323
C.R. Farrar, T.A. Duffey, Los Alamos National Laboratory; P.J. Cornwell, Rose-Hulman Institute of Technology; S.W. Doebling, Los Alamos National Laboratory
Comparison of Dynamic Characteristics of an Office Building Obtained from Different Experimental Methods, #3241069
C.E. Ventura, V. Latendresse, The University of British Columbia

Investigation of Pedestrian Walking Loads on a Cable Stayed Footbridge by Using Modal Testing and FE Model Updating, #3251076
M.J. Hartley, A. Pavic, P. Waldron, University of Sheffield

Designing and Building a Force Plate for Measuring Input Forces in Modal Tests, #3261083
J.N. Howard, M.A. Kaiser, T.M. Murray, Virginia Polytechnic Institute and State University

Yellow River Railway Bridge's Modal Test Exciting with Hammer, #1131089
H.Q. Ying, S. Shen, S.H. Lei, J.M. Liu, China Orient Institute of Noise Vibration

27. Modal Analysis: Reducing Time to Market

Transient Nonlinear Dynamics of Camshafts, #48 ..1093
S. Kuusisto, ABB Motors Oy

Parameter Identification in Rotor Bearing Systems, #51 ..1100
V. Steffen, Jr., E.G. Assis, Federal University of Uberlândia

Synchronous Sampling Sideband Orders from Helical Planetary Gear Sets, #3101107
C.E. Fair, A.L. Wicks, Virginia Polytechnic Institute and State University;
W.R. Kelley, Borg Warner Automotive

Separating Close and Crossing Orders With Frequency Domain Order Tracking., #2891113
J.R. Blough, Michigan Technological University; D.L. Brown, University of Cincinnati

Applied-Modal-Analysis Aided Design of the Vertical Pump, #1971119
B. Sheng, K. Imamura, H. Matsumoto, Kubota Corporation

28. Processing Modal Data

Experimental Evaluation of the Transmissibility Matrix, #418 ..1126
A.M.R. Ribeiro, N.M.M. Maia, J.M.M. Silva, Technical University of Lisbon/I.ST.

GIF Animated of Mode Shapes and Other Data on the Internet, #20 ..1130
R.S. Pappa, NASA Langley Research Center

Custom-designed Filters Through Time-window Modification, #179 ..1145
S. Olsson, Signal Control Sweden AB; T.L. Lagô, I. Claesson, University of Karlskrona/Ronneby

DSP Based Processing of Vibration Signals of Varying Frequency, #171 ..1150
A.C. Téllez-Anguiiano, Instituto Tecnológico de Culiacán; M.A. Oliver-Salazar, Centro Nacional de Investigación y Desarrollo Tecnológico; J.E. Aguirre-Romano, Instituto de Investigaciones Eléctricas; E.S. Gutiérrez-Wing, Centro Nacional de Investigación y Desarrollo Tecnológico

Data Block Length Effects on Damage Detection, #287 ..1154
A. Agneni, L. Balis Crema, A. Paolozzi, University of Rome "La Sapienza"

Frequency Resolution Effects on FRF Estimation: Cyclic Averaging vs. Large Block Size, #321 ..1161
A.W. Phillips, A.T. Zucker, R.J. Allemang, University of Cincinnati
29. Non-linear Systems

Nonlinear Identification of a Scaled Structural Dynamic Model of the F-15 Tail Section, #185 1175
A.A. El-Badawy, A.H. Nayfeh, Virginia Polytechnic Institute and State University

Comparison of Experimental Identification Techniques for a Nonlinear SDOF System, #203 1182
R.W. Krauss, A.H. Nayfeh, Virginia Polytechnic Institute and State University

Modal Parameter Estimation of a Simulated Non-linear Structure, #228 1188
G.C. Foss, Boeing Information, Space & Defense Systems

Spatial Method of Characterizing Nonlinearities in Multiple Degree of Freedom Vibrating Systems, #300 1195
D.E. Adams, R.J. Allemang, University of Cincinnati

Nonlinear Bending-torsion Oscillations of Cantilever Beams to Combination Parametric Excitation, #206 1203
H.N. Arafat, A.H. Nayfeh, Virginia Polytechnic Institute and State University

Conditioned Frequency Response Estimators for Nonlinear Systems, #161 1210
C.M. Richards, Caterpillar Inc.; R. Singh, Ohio State University

Low-dimensional Model for Nonlinear Vibrations of Circular Cylindrical Shells, #93 1217
M. Amabili, University of Parma; F. Pellicano, Università di Modena

30. Modal Analysis Applied to Bridge Assessment

Developed by: H. Ghasemi, Turner-Fairbank Highway Research Center

Measuring Bridge Performance Using Modal Parameter Based Non-destructive Damage Detection, #398 1223
C. Sikorsky, California Department of Transportation; N. Stubbs, S. Park, S. Choi, R. Bolton, Texas A&M University

Modal Analysis as a Bridge Monitoring Tool, #399 1230
F.N. Catbas, Drexel Intelligent Infrastructure & Transportation Safety Institute; M.S. Lenett, University of Cincinnati; A.E. Aktan, Drexel Intelligent Infrastructure & Transportation Safety Institute; D.L. Brown, A.J. Helmicki, V.J. Hunt, University of Cincinnati

Vibration Suppression Measures for Stay Cables, #400 1237
H. Tabatabai, A.B. Mehrabi, Construction Technology Laboratories, Inc.

Modal Analysis of Long Span Truss Bridges, #401 1244
I.E. Harik, C.M. Madasamy, D. Chen, University of Kentucky; D. Herd, Kentucky Transportation Cabinet

Condition Assessment of Commissioned Infrastructure Using Modal Analysis and Flexibility, #402 1251
M.S. Lenett, V.J. Hunt, A.J. Helmicki, D.L. Brown, University of Cincinnati; F.N. Catbas, A.E. Aktan, Drexel Intelligent Infrastructure & Transportation Safety Institute
A Methodology to Nondestructively Evaluate the Structural Properties of Bridges, #403
N. Stubbs, Texas A&M University; C. Sikorsky, California Department of Transportation;
S. Park, S. Choi, R. Bolton, Texas A&M University

Measuring Bridge Modal Parameters for use in Non-destructive Damage Detection and
Performance Algorithms, #243
R. Bolton, N. Stubbs, S. Park, S. Choi, Texas A&M University;
C. Sikorsky, California Department of Transportation

31. System Identification to Monitor Civil Engineering Structures II

Developed by: G. de Roeck, Katholieke Universiteit Leuven

Numerical Simulation of Damage Scenarios of Bridge Z24, #343
M. Abdel Wahab, J. Maeck, G. De Roeck, Katholieke Universiteit Leuven

Using Numerical Experimentation as a Tool for Damage Diagnosis, #344
M. Brughmans, K. Daemen, LMS International

Damage Localization in Reinforced Concrete Beams by Dynamic Stiffness Determination, #345
J. Maeck, M. Abdel Wahab, G. De Roeck, Katholieke Universiteit Leuven

Efficiency Control of Strengthening Work by Dynamic System Identification. Case Study:
Barmes Bridge, #347
C. Castiglioni, Politecnico di Milano; M. Garozzo, G. Pasqualato, Sineco S.p.A;
S. Vajna de Pava, A. Zambrano, Politecnico di Milano

Anti-seism of Communication Equipment via Active Control, #17
X. Liu, Y. Zhang, Q. Li, J. Li, Beijing University of Posts and Telecommunications

32. Diagnostics of Rotating Machinery

Developed by: H.A. Gaberson, Naval Facilities Engineering Service Center

An Assessment of Turbomachinery Condition Monitoring and Failure
Prognosis Technology, #348
H.C. Pusey, Society for Machinery Failure Prevention Technology

Electric Current Modal Impulses to Detect Motor-driven Equipment Condition, #350
W.D. Marscher, Mechanical Solutions, Inc.

Energy Losses Caused by Machinery Misalignment and Unbalance, #205
H.A. Gaberson, R. Cappillino, Naval Facilities Engineering Service Center

Transfer Function Representation of Flexible Supports and Casings of
Rotating Machinery, #160
J.A. Vázquez, L.E. Barrett, University of Virginia

Fault Detection in Ball-bearings Using Wavelet Variance, #234
W.J. Staszewski, University of Sheffield; R. Ruotolo, Politecnico di Torino;
D.M. Storer, Centro Ricerche FIAT
33. Aircraft/Aerospace-Damage Detection

Damage Detection and Localization Using a Maximum Likelihood Estimator, #124 ... 1340
 E. Parloo, P. Guillaume, M. Van Overmeire, Vrije Universiteit Brussel

Vibration Signal Processing for the Westland Helicopter Data, #82 ... 1347
 S. Braun, M. Feldman, Technion-Israel Institute of Technology;
 M. Sidahmed, UTC France; M. Zacksenhouse, Technion-Israel Institute of Technology

Damage Detection on a Wind Turbine Blade Section, #134 ... 1359
 M.J. Sundaresan, M.J. Schulz, J. Hill, E.A. Wheater, F. Ferguson, North Carolina
 A&T State University; P.F. Pai, University of Missouri-Columbia

Damage Detection of a Gyroscopic Systems Using an Asymmetric Minimum Rank Perturbation Theory, #57 ... 1366
 K.C. Yap, D.C. Zimmerman, University of Houston

Experimental Validation of the LMI Methods for Structural Damage Detection, #89 ... 1373
 M.O. Abdalla, K.M. Grigoriadis, D.C. Zimmerman, University of Houston

Two Statistical Pattern Recognition Methods for Damage Localization, #414 .. 1380
 I. Trendafilova, W. Heylen, P. Sas, Katholieke Universiteit Leuven

A Structural Damage Identification Procedure with Application to a Frame Structure with Bolted Joints, #239 ... 1387
 L. Yu, Yangtze River Scientific Research Institute; M. Link, University of Kassel;
 S. Law, The Hong Kong Polytechnic University; L. Zhang, Nanjing University of Aeronautics and Astronautics

34. Experimental Techniques III

A Comparison of MIMO-FRF Excitation/Averaging Techniques on Heavily and Lightly Damped Structures, #320 ... 1395
 A.W. Phillips, A.T. Zucker, R.J. Alleman, University of Cincinnati

An Acoustic Non Invasive Technique for the Diagnosis of Plaster Detachment in Frescos, #207 1405
 D. Del Vescovo, A. Fregolent, Università di Roma La Sapienza

Modal Analysis of the Bleachers of a Sporting Gym, #186 ... 1412
 P.A.O. Almeida, J.F.S. Rodrigues, University of São Paulo

Modal Analysis of the Structure of a Soccer Stadium, #187 ... 1417
 P.A.O. Almeida, J.F.S. Rodrigues, University of São Paulo

Dynamic Modulus Estimation and Structural Vibration Analysis, #166 ... 1423
 A. Gupta, S. Khandaswamy, S. Yellepeddi, Northern Illinois University;
 T. Mulcahy, J. Hull, Argonne National Laboratory

A Design Assessment Tool for Squeak and Rattle Performance, #80 ... 1428
 D.E. Soine, H.A. Evensen, C.D. Van Karsen, Michigan Technological University

Localization of Structural Excitation Using Matched Field Processing Techniques, #78 ... 1433
 M. Craun, D. Feit, Naval Surface Warfare Center
35. Substructuring

Using Rigid Connections in Experimental Modal Synthesis: Implementation and Validation, #125 ... 1440
 B. Dierckx, W. Leurs, N. Boucart, LMS International; W. Moll, Daimler-Benz AG

On the Dynamic Properties of Reduced Systems in Structural Coupling, #152 ... 1445
 A.P.V. Urgueira, Faculdade de Ciências e Tecnologia; N.M.M. Maia, Technical University of Lisbon/I.S.T.; R.A.B. Almeida, Faculdade de Ciências e Tecnologia

Experimental Evaluation of Receptance Coupling Analysis Applied to Rotor/STator System, #168 ... 1451
 J.V. Ferreira, D.J. Ewins, Imperial College of Science, Technology and Medicine

Vibration Characteristics of a Beam with Nonlinear Support Using Receptance Coupling Analysis, #169 ... 1458
 J.V. Ferreira, D.J. Ewins, Imperial College of Science, Technology and Medicine

Experimental Modal Analysis for a Satellite with Flexible Appendages, #46 ... 1465
 K. Komatsu, M. Sano, National Aerospace Laboratory Japan; A. Tsujihata, National Space Development Agency

Component Mode Synthesis Methods for Non-proportionally Damped Systems, #58 ... 1472
 J.A. Morgan, General Motors Powertrain Group; C. Pierre, G.M. Hulbert, University of Michigan

The Importance Assessment of RDOF in FRF Coupling Analysis, #67 ... 1481
 W. Liu, D.J. Ewins, Imperial College of Science, Technology and Medicine

36. Model Correlation & Updating for Nonlinear Dynamics

Developed by: S.W. Doebling and F.M. Hemez, Los Alamos National Laboratory

Bilinear System Characteristics from Nonlinear Time Series Analysis, #374 ... 1488
 N.F. Hunter, Jr., Los Alamos National Laboratory

Statistical Tests of System Linearity Based on the Method of Surrogate Data, #375 ... 1495
 T.L. Paez, Sandia National Laboratories; N.F. Hunter, Los Alamos National Laboratory; J. Red-Horse, Sandia National Laboratories

Test-analysis Correlation and Finite Element Model Updating for Nonlinear, Transient Dynamics, #153 ... 1501
 F.M. Hemez, S.W. Doebling, Los Alamos National Laboratory

Model Correlation and Updating of a Nonlinear Finite Element Model Using Crush Test Data, #376 ... 1511
 M.C. Anderson, T.K. Hasselman, ACTA, Inc.; T.G. Carne, Sandia National Laboratories

Approximation and Identification of Nonlinear Structural Dynamics, #377 ... 1518
 D.C. Zimmerman, University of Houston; T.K. Hasselman, M.C. Anderson, ACTA Inc.

A Procedure to Determine Accurate Rotations from Measured Strains and Displacements for System Identification, #378 ... 1525
 K.C. Park, G.W. Reich, University of Colorado at Boulder
37. Finite Element

Models For Thick Beams and Frames, #62 ... 1531
A.W. Lees, S.E. Hirdaris, University of Wales, Swansea

Mixed-formulation Representations of Sub-systems, #64 ... 1538
S.D. Garvey, U.H. Eke, J.E. Penny, Aston University; M.I. Friswell, University of Wales, Swansea

A Validation of Bayesian Finite Element Model Updating for Linear Dynamics, #151 1545
F.M. Hemez, S.W. Doebling, Los Alamos National Laboratory

Finite Element Model Updating of the Welded Joints in a Tubular H-frame, #49 1556
B. Horton, H. Gurgenci, University of Queensland/CMTE; M. Veidt, University of Wales, Swansea

Updating of the Starship Fuselage Finite Element Model Using Modal Data, #258 1563
S. Hassiotis, University of South Florida

Finite Element Modeling for Floating Raft Isolation Systems, #39 1570
Z.Q. Qu, H.X. Hua, Z.F. Fu, Shanghai Jiao Tong University

38. Analytical Methods III

Visualization and Dimension Reduction of High-dimensional Data for Damage Detection, #275 1576
K. Worden, G. Manson, University of Sheffield

Operating Modes of a Teetered-rotor Wind Turbine, #268 .. 1586
G.S. Bir, National Renewable Energy Laboratory; K. Stol, University of Colorado at Boulder

A Practical Method to Identify the Potential Resonance of Centrifugal Compressor Impellers, #226 ... 1597
Q. Wang, Ingersoll-Rand Company

Exact Steady-state Probabilistic Density of Nonlinear Stochastic Systems, #259 1603
R. Wang, K. Yasuda, Nagoya University

The Identification of Rotor Unbalance from Measured Foundation Response Data, #61 1610
S. Edwards, A.W. Lees, M.I. Friswell, University of Wales, Swansea

Time Domain-based Identification of Mechanical Characteristics of Supporting Elements, #177 1616
L.A. da Silva, D.A. Rade, Federal University of Uberlândia

39. Experimental Techniques IV

Converting a Steering Knuckle into a 6-DOF Force Transducer, #291 1622
M.C. Witter, S.M. Dumbacher, D.L. Brown, University of Cincinnati

A Novel Approach for Estimating Natural Frequencies of Foundation Vibrations, #210 1633
M.R. Svinkin, Independent Consulting Engineer

Laboratory Simulation of Response to a Distributed Pressure Load, #195 1640
T.W. Simmermacher, R. Mayes, Sandia National Laboratories
A Method for the Indirect Measurement of Acoustic Power Emitted by Synchronous Belts, #305
R. Di Sante, Università degli Studi di Ancona; G. Ferri, Dayco Europe SpA; G.M. Revel, G.L. Rossi, Università degli Studi di Ancona

Determination of Unknown Impact Force Acting on Arbitrary Structures, #213
B.T. Wang, C.H. Chiu, National Pingtung University of Science & Technology

Aeroelastic Investigation on a Fighter Aircraft Including Flight Control Systems, #231
W.G. Luber, O. Sensburg, Daimler-Benz Aerospace AG

40. Rotating Machinery II

Rotor Balancing Using Vibration Data from Fast Run-ups and Coast-downs, #107
E.S. Gutierrez-Wing, Centro Nacional de Investigación y Desarrollo Tecnologico; J.E. Aguirre-Romano, Instituto de Investigaciones Eléctricas

Condition Monitoring and Failure Prediction for Various Rotating Equipment Components, #140
J.T. Roth, Arkansas State University; S.M. Pandit, Michigan Technological University

A Fast Multi-plane Shaft Balancing Method With Adaptive Features, #180
S. Olsson, Signal Control Sweden AB; T.L. Lagó, University of Karlskrona/Ronneby; H. Håkansson, Volvo Car Cooperation

Stability of Rotors: The Influence of Different Journal Bearing Models, #25
F. Vatta, A. Vigliani, Politecnico di Torino

Backward Whirl Investigations in Isotropic and Anisotropic Systems with Gyroscopic Effects, #79
S.U. Lee, C. Leontopoulos, C. Besant, Imperial College of Science, Technology and Medicine

Application of Triaxial Force Sensor to Impact Testing of Spinning Rotor Systems, #98
C.L. Kessler, University of Cincinnati/U.S. Air Force Research Laboratory; J. Kim, University of Cincinnati

41. Bridges

Ambient Vibration Measurements of The Lindquist Bridge in British Columbia, Canada, #75
C.J. Black, C.E. Ventura, University of British Columbia

Determination of the Dynamic Effects on Reinforced Concrete Bridges, #136

Bridge Monitoring Using a 64-channel Fiber Bragg Grating System, #150
M.D. Todd, Naval Research Laboratory; C.C. Chang, URF, Inc.; G.A. Johnson, S.T. Vohra, Naval Research Laboratory; J.W. Pate, Physical Science Laboratory; R.L. Idriss, New Mexico State University

Evaluation of a Road Bridge Dynamic Response to Ambient Excitation by Wavelet and Other Estimation Techniques, #271
A. Fasana, L. Garibaldi, E. Giorcelli, S. Marchesiello, M. Ruzzene, Politecnico di Torino
Analytical and Experimental Study of a Three Span Bridge in Alberta, Canada

C.J. Black, C.E. Ventura, University of British Columbia

Actions of a Standard Vehicle on Bridges of Reinforced Concrete Bridges

Performance Evaluation of a Base-isolated Bridge Using Complex Modal Analysis

K. Kaito, M. Abe, Y. Fujino, M.T.A. Chaudhary, The University of Tokyo

Modal Testing Methods I

Determination of Material Properties of Plates from Modal ESPI Measurements

L. Gaul, K. Willner, S. Hurlebaus, University of Stuttgart

Analysis of Stochastic Structures: Perturbation Method and Projection on Homogeneous Chaos

O. Dessombz, A. Diniz, F. Thouverez, L. Jézéquel, École Centrale de Lyon

Improving Exciter Performance in Modal Testing

T.R. Comstock, University of Tennessee at Martin

Experience in Estimating Fixed-base Modal Parameters from Testing in Flexible Support Configuration

Y. Soucy, Canadian Space Agency; J.L. Humar, Carleton University

Modal Testing for Microstructures

Y.F. Chou, L.C. Wang, National Taiwan University

A State Space Approach to Output-only Vibro-acoustical Modal Analysis

M. Abdelghani, IRISA-INRIA; L. Hermans, H. Van der Auweraer, LMS International

Modal Analysis of an Upper Nevada Penstock at Hoover Dam

R.V. Todd, Bureau of Reclamation

Active Control

Active Control of Chatter in Turning - The Origin of Chatter

L. Håkansson, I. Claesson, P.O.H. Sturesson, T.L. Lagö, University of Karlskrona/Ronneby

Fluid Wave Actuator for the Active Control of Hydraulic Pulsations in Piping Systems

J.P. Maillard, T.L. Lagö, University of Karlskrona Ronneby; C.R. Fuller, Virginia Polytechnic Institute and State University

An Efficient Training Technique for a Neural-network Controller for Seismically-excited Structures

D.A. Liut, E.E. Matheu, D.T. Mook, M.P. Singh, Virginia Polytechnic Institute and State University

Optimal Placement of Actuators and Sensors for Vibration Active Control

F. Liu, L. Zhang, Nanjing University of Aeronautics and Astronautics; M. Link, University of Kassel

Active Control of Machine Tool Chatter

L. Håkansson, I. Claesson, T.L. Lagö, University of Karlskrona/Ronneby
Sampling Technique in Wavelet Analysis of Vibrating Signals of Rotating Machinery, #395 1832
S. Qin, Chongqing University Test Center

44. Analytical Methods IV

The Energy Flow Method for Strongly Coupled Systems, #2 ... 1839
Q.J. Zhang, M.G. Sainsbury, The University of Hong Kong

Wave Propagation Analysis of Frame Structures Using the Spectral Element Method, #37 1846
H. Igawa, K. Komatsu, M Sano, National Aerospace Laboratory

Random Vibration Analysis Using Statistically Equivalent Transient Analysis, #174 1852
C.W. Engelhardt, Structural Dynamics Research Corporation

Utilizing Gauss-Hermite Quadrature to Evaluate Uncertainty in Dynamic System Response, #202 1856
R.V. Field, Jr., T.L. Paez, J.R. Red-Horse, Sandia National Laboratories

Dynamic Behavior Modification for Continuous System, #114 .. 1862
H.C. Chen, Y.F. Chou, C.J. Jang, National Taiwan University

A New Sensitivity Analysis Method of Frequency Response Function, #86 .. 1869
H. Hua, Y. Shi, Z. Qu, Shanghai Jiao Tong University

Structural Damages Detection Based on Dynamic Model Intelligent Updating, #88 1873
Y. Xu, Y. Zhou, Wuhan Transportation University

45. Modal Parameter Identification II

Structural Identification Using Inverse System Dynamics, #224 .. 1880
D.C. Kammer, A.D. Steltzner, University of Wisconsin-Madison

Maximum Likelihood Identification of Modal Parameters from Operational Data, #127 1887
P. Guillaume, Vrije Universiteit Brussel; L. Hermans, H. Van der Auweraer,
LMS International

Effect of Residual Compliance in Hard-mounted Test Configurations on Measured Modal Parameters, #146 .. 1894
A. Grillenbeck, S. Dillinger, IABG mbH; W. Hüßler, W. Beuchel, Daimler-Benz Aerospace

Detection and Location of a Crack in a Plate Using Modal Analysis, #306 .. 1902
S.H. Yoo, H.K. Kwak, B.S. Kim, Ajou University

Comparative Analysis of Sensitivity of Vibration Damage Indicators by the Results of Laboratory Tests, #215 .. 1909
A.P. Bovsunovsky, Institute for Problems of Strength

Formulating Hankel Singular Values of Closely-spaced Modes in Time Domain, #255 1916
A.P. Cherng, National I-Lan Institute of Technology

The Higher Precision Curve Fitting to Obtain Modal Parameters, #293 .. 1923
G. Liu, Becchis Osiride s.r.l.
46. Rotating Machinery III

Complex Modal Analysis and Modal Superposition for Rotating Machinery, #100 1930
 C.L. Kessler, University of Cincinnati/U.S. Air Force Research Laboratory;
 J. Kim, University of Cincinnati

Characteristics of the Vold-Kalman Order Tracking Filter, #212 1938

A Study on Dynamic Characteristics of Floating and Fixed Pumping Systems, #249 1946
 M.A. Helal, Mechanical & Electrical Research Institute; M.A. Nasser, Menofia University;
 S.M. Abdel-Rahman, Mechanical & Electrical Research Institute

Dynamic Analysis and Control of Pumping Stations, #250 1956
 A.A. Nasser, M.A. Nasser, Menoufia University; E.H.T. El-Shirbeeny,
 S.M. Abdel-Rahman, Mechanical & Electrical Research Institute

Preliminary Study of Rolling Element Bearing Behavior Under Radial Loading, #280 1968
 N.S. Chana, Z.F. Reif, R.G.S. Gaspar, University of Windsor

Diagnosis for Rotating Shaft Using Adaptive Modal Parameter Identification Method, #282 1974
 T. Koizumi, N. Tsujiuchi, T. Sakai, Doshisha University;
 Y. Matsumura, University of Shiga Prefecture

Damage Detection of Roller Bearing Using Wavelet Transform, #297 1980
 J. Yang, X. Xiong, S. Xiong, Taiyuan University of Technology

47. System Identification II

Improved Modal Parameter Identification by Non-parametric Modeling of the Measurement Noise, #21 1984
 P. Verboven, P. Guillaume, M. Van Overmeire, Vrije Universiteit Brussel

Effects of Identified Parameter Uncertainty on Structural Damage Detection, #30 1991
 J.S. Lew, Tennessee State University

Optimization of an Engine Mounting System for Vibro-acoustic Comfort Improvement, #32 1998
 M. La Civita, A. Sestieri, University of Rome "La Sapienza"

Identification of Ritz Vectors from the Space Shuttle Vertical Stabilizer Assembly Test Article, #176 2005
 T.T. Cao, NASA Johnson Space Center; D.C. Zimmerman,
 G.H. James III, University of Houston

Assessment of Localized Damage in Beam Structures Using Limited Modal Characteristics, #236 2011
 J. Jeon, Hanyang University; E. Choi, Georgia Institute of Technology;
 H. Kim, Honam University; D. Chang, Hanyang University

Model Updating with Fuzzy Modification Method, #18 2018
 X. Liu, Beijing University of Posts and Telecommunications

Theory & Modeling and Realizing of Integrated Neural Networks in Fault Diagnosis, #132 2025
 S. Zhang, H. Yu, Northeastern University
48. Modal Test Methods II

On the Identification of Interface Forces and Motions in Coupled Structures, #279 ... 2031
 P.S. Varoto, University of São Paulo; K.G. McConnell, Iowa State University

Modal Response of Interior Mass Based Upon External Measurements, #148 ... 2038
 B.R. Jorgensen, T. Woehrle, M. Eli, C.T. Chow, Lawrence Livermore National Laboratory

Obtaining a Scaled Modal Model of Panel Type Structures Using Acoustic Excitation, #128 2042
 J. Deweer, B. Dierckx, LMS International

Comparison Modal Testing Methods of Aircraft, #45 ... 2049
 M. Sano, K. Komatsu, M. Minegishi, National Aerospace Laboratory Japan

Small Rockets Exciting Qian-Tang Great Bridge for Modal Analysis, #112 ... 2056
 H.Q. Ying, J.M. Liu, Q.B. Ao, J.X. Yang, China Orient Institute of Noise Vibration

An Expert System for Seismic Evaluation-ESSE, #246 ... 2061
 C.C. Zhu, Xi'an Jiaotong University; K.C. Zhang, Southwest Institute of Structural Mechanics; J. Zhang, Xi'an Jiaotong University

Addendum

(Papers listed in the Addendum are ones which were submitted after the printer’s deadline.
Therefore, these papers could not be listed under the appropriate session titles).

Use of Operating Deflection and Mode Shapes for Machinery Diagnostics, #351 (Session 32) 2065
 W.D. Marscher, C.W. Jen, Mechanical Solutions, Inc.

Uncertainty Propagation Using a Stochastic Finite Element Approach, #103 (Session 4) 2072
 J.R. Red-Horse, Sandia National Laboratories; R. Ghanem, Johns Hopkins University

The Truth Behind Misalignment Vibration Spectra of Rotating Machinery, #349 (Session 32) 2078
 S. Ganeriwala, S. Patel, H. Hartung, SpectraQuest, Inc.