Thermal Spray
Meeting the challenges of the 21st Century

Proceedings of the
15th International Thermal Spray Conference
25-29 May 1998
Nice, France

Edited by
Christian Coddet

Organized by
Commissariat à l'Energie Atomique
Institut Polytechnique de Sevenans
Université de Limoges
Ecole Nationale Superieure des Mines de Paris
Ecole Centrale de Lyon
Institut de Soudure
on behalf of the
Select Committee
on Surfacing and Thermal Spraying
of the International Institute of Welding

Co-sponsored by
The ASM Thermal Spray Society
The German Welding Society
The High Temperature Society of Japan
Table of Contents

Volume 1

Sympoium 1 : Oxidation and corrosion

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A REVIEW ON PROTECTION FROM CORROSION, OXIDATION AND HOT CORROSION BY THERMAL SPRAY COATINGS.</td>
<td>3</td>
</tr>
<tr>
<td>TOBE S., Ashikaga Institute of Technology, TOCHIGI-KEN, JAPAN</td>
<td></td>
</tr>
<tr>
<td>THERMAL SPRAYED POLYMER COATINGS FOR CORROSION PROTECTION IN A BIOCHEMICAL TREATMENT PROCESS.</td>
<td>13</td>
</tr>
<tr>
<td>ALLAN M.L., BERNDT C.C., BROGAN J.A., OTTerson D., SUNY at Stony Brook, Thermal Spray Laboratory (TSL), STONY BROOK, NY, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>THERMAL SPRAYING OF HIGH PERFORMANCE THERMOPLASTICS.</td>
<td>19</td>
</tr>
<tr>
<td>LUGSCHEIDER E., HERBST C., FISCHER A., Aachen University of Technology, Materials Science Institute, AACHEN, GERMANY</td>
<td></td>
</tr>
<tr>
<td>ON THE MICROSTRUCTURES OF THERMALLY SPRAYED "PEEK" POLYMER.</td>
<td>25</td>
</tr>
<tr>
<td>LIAO H., BECHE E., CODDET C., IPSé, Laboratoire d'Etudes et de Recherches sur les Matériaux et Propriétés de Surface (LERMPS), BELFORT, FRANCE BERGER F., Laboratoire de Microanalyses Nucléaires (LMN), BESANCON, FRANCE</td>
<td></td>
</tr>
<tr>
<td>RESISTANCE OF THERMAL SPRAYED DUPLEX COATING COMPOSED OF Al AND Ni-Cr ALLOY AGAINST AQUEOUS CORROSION.</td>
<td>31</td>
</tr>
<tr>
<td>ISHIKAWA K., Tokyo Metallikon Co., Ltd, TOKYO, JAPAN SUZUKI T., Ajinomoto Co, Inc., KAWASAKI, JAPAN TOBE S., Ashikaga Institute of Technology, TOCHIGI-KEN, JAPAN KITAMURA Y., Kitamura Technology, KAMAKURA, JAPAN</td>
<td></td>
</tr>
<tr>
<td>FIELD PERFORMANCE OF SPRAYED ZINC CATHODIC PROTECTION ANODES.</td>
<td>37</td>
</tr>
<tr>
<td>TINNEA J.S., John S. Tinnea & Associates, SEATTLE, WA, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>FORMATION OF HIGHLY CORROSION RESISTANT ALLOYS USING LASER SURFACE ALLOYING...</td>
<td>43</td>
</tr>
<tr>
<td>SRIDHAR K., DESHMUKH M.B., Naval Materials Research Laboratory, BOMBAY, INDIA KHANNA A.S., Indian Institute of Technology, Corrosion Science & Engineering, BOMBAY, INDIA</td>
<td></td>
</tr>
<tr>
<td>THERMALLY SPRAYED COMPOSITE COATINGS FOR ENHANCED CORROSION PROTECTION OF STEEL STRUCTURES.</td>
<td>49</td>
</tr>
<tr>
<td>CORROSION RESISTANCE HVOF COATINGS BASED UPON TiC+NiTi AND (Ti,W) C+Ni.</td>
<td>57</td>
</tr>
</tbody>
</table>
AN ANALYSIS OF ENVIRONMENTAL FACTORS AFFECTING CORROSION BEHAVIOUR OF THERMAL SPRAY CERMET COATINGS

HODGKIESS T., University of Glasgow, Department of Mechanical Engineering, GLASGOW, SCOTLAND
NEVILLE A., Heriot-Watt University, Department of Mechanical and Chemical Engineering, EDINBURGH, SCOTLAND

CORROSION RESISTANCE OF THERMAL SPRAY INCONEL 690 COATINGS

NORMAND B., LIAO H., LANDEMARRE O., CODDE T., IPSé, Laboratoire d'Etudes et de Recherches sur les Matériaux et Propriétés de Surface (LERMPS), BELFORT, FRANCE
PAGETTI J., UFC, laboratoire de Corrosion et Traitement de Surface (LCTS), BESANCON, FRANCE

A STUDY OF OXIDATION BEHAVIOUR OF WC-Co, Cr3C2-NiCr AND TiC-Ni-BASED MATERIALS IN THERMAL SPRAY PROCESSES

BERGER L.-M., Fraunhofer Institute of Ceramic Technologies and Sintered Materials, DRESDEN, GERMANY
VUORISTO P., MANTILA T., Tampere University of Technology, Institute of Materials Science, TAMPERE, FINLAND
GRUNER W., Institute of Solid State and Materials Research, DRESDEN, GERMANY

CONTROLLING THE SACRIFICIAL CORROSION PROPERTIES OF SPRAYED ALUMINIUM ALLOY COATINGS

HORLOCK A.J., DENT A.H., MCCARTNEY D.G., HARRIS S.J., University of Nottingham, Department of Materials Engineering and Materials Design, NOTTINGHAM, U.K.

OXIDATION PROPERTIES OF NiAl INTERMETALLIC COATINGS PREPARED BY HIGH VELOCITY OXY-FUEL THERMAL SPRAYING

HEARLEY J.A., LITTLE J.A., University of Cambridge, Department of Materials Science and Metallurgy, CAMBRIDGE, U.K.
STURGEON A.J., TWI, CAMBRIDGE, U.K.

ASSESSMENT OF HVOF COATINGS FOR WET CORROSION PROTECTION

DVORAK M., HEIMGARTNER P., Eutectic + Castolin Group, LAUSANNE, SWITZERLAND

Symposium 2 : Wear and corrosion - Alternatives to conventionnal coatings

AN OVERVIEW OF ALTERNATIVE COATINGS FOR WEAR AND CORROSION RESISTANCE

TUCKER R.C., Praxair Surface Technologies, Inc., INDIANAPOLIS, IN, U.S.A.

MICROSTRUCTURE AND WEAR-RESISTANCE OF Fe-Cr-B ALLOY COATINGS FABRICATED BY DETONATION GUN

JIN H.-W., PARK C.G., POSTECH - Center for Advanced Aerospace Materials, POHANG, KYUNGBUK, KOREA
KIM M.C., Research Institute of Industrial Science and Technology (RIST), Functional Metallic Materials Research Team, POHANG, KOREA

PLASMA SPRAYED SELF-LUBRICATING Cr2O3-CaF2 COATINGS : FRICTION AND WEAR PROPERTIES

VOS F., DELAEY L., DE BONTE M., FROYEN L., Katholieke Universiteit Leuven, Department of Metallurgy and Materials Engineering (MTM), HEVERLEE, BELGIUM
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFLUENCE OF SURFACE MICROSTRUCTURE OF CERAMIC COATINGS ON THE INITIATION AND DEVELOPMENT OF SCUFFING PHENOMENA</td>
<td>123</td>
</tr>
<tr>
<td>ANTOSZEWSKI B., ZORAWSKI W., Technical University of Kielce, KIELCE, POLAND</td>
<td></td>
</tr>
<tr>
<td>EFFECT OF MICROSTRUCTURE AND ALLOY ADDITIONS ON THE SLIDING FRICTION AND WEAR OF PLASMA SPRAYED MOLYBDENUM ALLOY COATINGS</td>
<td>127</td>
</tr>
<tr>
<td>USMANI S., SAMPATH S., SUNY at Stony Brook, Thermal Spray Laboratory (TSL), STONY BROOK, NY, U.S.A. HOUCK D.L., Osram Sylvania Inc., TOWANDA PA, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>CORED WIRE APPLICATION USING ELECTRIC ARC SPRAY</td>
<td>133</td>
</tr>
<tr>
<td>SAMPSON E.R., Tafa Incorporated, CONCORD, NH, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>A REVIEW OF CLEARANCE CONTROL WEAR MECHANISMS FOR LOW TEMPERATURE ALUMINIUM SILICON ALLOYS</td>
<td>139</td>
</tr>
<tr>
<td>WET ABRASION AND SLURRY EROSION RESISTANCE OF SEALED OXIDE COATINGS</td>
<td>145</td>
</tr>
<tr>
<td>KNUUTTILA J., AHMANIEMI S., LEIVO E., SORSA P., VUORISTO P., MANTYLA T., Tampere University of Technology, Institute of Materials Science, TAMPERE, FINLAND</td>
<td></td>
</tr>
<tr>
<td>ELEVATED TEMPERATURE EROSION RESISTANCE OF SEVERAL EXPERIMENTAL AMORPHOUS THERMAL SPRAY COATINGS</td>
<td>151</td>
</tr>
<tr>
<td>WANG B., Metalspray Inc, RICHMOND, U.S.A.</td>
<td></td>
</tr>
<tr>
<td>DC PLASMA SPRAYED POLYMER COMPOSITE COATINGS FOR ABRASION RESISTANT PROTECTIVE SURFACES</td>
<td>157</td>
</tr>
<tr>
<td>TUFA K.Y., GITZHOFER F., Universite de Sherbrooke, Fac. des Sciences Appliquees, Department de genie Chimique, SHERBROOKE, CANADA</td>
<td></td>
</tr>
<tr>
<td>SLURRY EROSION RESISTANCE OF ARC-SPRAYED AND LASER-MELTED COATINGS</td>
<td>163</td>
</tr>
<tr>
<td>DALLAIRE S., National Research Council Canada, BOUCHERVILLE, QUEBEC, CANADA DUBE D., FISET M., Universite Laval, Faculty of Engineering, Department of Mining and Metallurgy, STE-FOY, QUEBEC, CANADA</td>
<td></td>
</tr>
<tr>
<td>WEAR BEHAVIOUR OF HVOF AND HVAF SPRAYED WC-CERMET COATINGS</td>
<td>169</td>
</tr>
<tr>
<td>JACOBS L., HYLAND M., University of Auckland, Department of Chemical and Materials Engineering, AUCKLAND, NEW ZEALAND DE BONTE M., Katholieke Universiteit Leuven, Department of Metallurgy and Materials Engineering (MTM), HEVERLEE, BELGIUM</td>
<td></td>
</tr>
<tr>
<td>A STUDY ON THE WEAR CHARACTERISTICS OF PLASMA SPRAYED NiCrSiB/WC-12Co MIXED COATING</td>
<td>175</td>
</tr>
<tr>
<td>AHN H.S., LEE C.H., Han Yang University, Dept. of Metallurgical Eng., SEOUL, KOREA</td>
<td></td>
</tr>
<tr>
<td>MICROSTRUCTURE AND WEAR RESISTANCE OF PLASMA SPRAYED WC-Co-Ni COATINGS</td>
<td>181</td>
</tr>
<tr>
<td>HAYASHI H., HARAGUCHI H., ITO H., Koei Seika Co., Ltd, FUKUOKA, JAPAN NAKANO O., Nippon Tungsten Co., Ltd, SAGA-PREF., JAPAN</td>
<td></td>
</tr>
<tr>
<td>MICROSTRUCTURE AND PROPERTIES OF TUNGSTEN CARBIDE COATINGS SPRAYED WITH VARIOUS HVOF SPRAY SYSTEMS</td>
<td>187</td>
</tr>
<tr>
<td>SCHWETZKE R., KREYE H., University of the Federal Armed Forces Hamburg, Institute for Materials Technology, HAMBURG, GERMANY</td>
<td></td>
</tr>
</tbody>
</table>
EFFECT OF POWDER TYPE AND COMPOSITION ON THE EROSION AND ABRASION OF HP/HVOF DEPOSITED WC-Co COATINGS ... 193
DE VILLIERS LOVELOCK H.L., VAN WYK P., Mattek, CSIR, PRETORIA, SOUTH AFRICA

APS AND HVOF COATINGS ALTERNATIVE TO HARD CHROMIUM, A TRIBOLOGICAL APPROACH. . . 199
DUHAMEL J.P., Sulzer Metco, VILLEFONTAINE, FRANCE
CHEN Y.M., CETIM, SENLIS, FRANCE
REBY J., CETIM, NANTES, FRANCE
NESTLER M., Sulzer Metco, HATTERSHEIM A.M., GERMANY

A STUDY ON THE ARC SPRAYING OF 7Cr13 CORED WIRE AND TRIBOLOGICAL PROPERTIES OF THE COMPOSITE COATING .. 207
XU B., MA S., WANG J., TAN J., Surface Engineering Research Institute of CMES, BEIJING, P.R. CHINA

FRICTION AND CORROSION BEHAVIOR OF DIFFERENT CERAMIC COATINGS (OXIDES) OBTAINED BY THERMAL SPRAY FOR QUALIFICATION TESTS IN SEA WATER 211
GIROUD A., Direction Générale de l'Armement, Centre Technique Systèmes Navals, TOULON NAVAL, FRANCE
JOUANNY C., HEUZE J.L., GAILLARD F., GUIRALDENQ P., Direction Générale de l'Armement, Service Technique (Plateforme), PARIS ARMEES, FRANCE

MICROSTRUCTURAL EVALUATIONS OF THE PLASMA TRANSFERRED ARC COATED LAYERS ON THE HARDNESS, WEAR RESISTANCE, AND CORROSION FOR THE HARDFACING OF Ni- AND Co-BASED ALLOYS ... 217
KIM H.-J., Research Institute of Industrial Science and Technology , POHANG, KOREA
KIM Y.J., POSTECH - Center for Advanced Aerospace Materials, POHANG, KYUNGBUK, KOREA

A STUDY IN THE HIGH TEMPERATURE TRIBOLOGICAL CHARACTERISTICS OF THE PLASMA SPRAYED ZrO2 COATING ... 225
SONG Y.S., HAN J.-C., PARK M.-H., Hankuk Aviation University, Department of Materials Engineering, KYUNG-GI DO, KOREA
RO B.-H., LEE K.-H., BYUN E.-S., Korea Institute of Machinery and Metals, KOREA CHANG-WON, KOREA
SASAKI S., Mechanical Engineering Lab., IBARAKI, JAPAN

SLURRY AND DRY EROSION OF HIGH VELOCITY OXY-FUEL THERMAL SPRAYED COATINGS 231
ARSENAULT B., LEGOUX J.G., National Research Council Canada, Industrial Materials Institute, BOUCHERVILLE, QUEBEC, CANADA
IMMARIGEON J.P., PARAMESWARAN V.R., National Research Council Canada, Institute for Aerospace Research, OTTAWA ONTARIO, CANADA
HAWTHORNE H., National Research Council Canada, Integrated Manufacturing Technologies Institute ouest, VANCOUVER, BC, CANADA

TRIBOLOGICAL PROPERTIES OF Mo/NiCrBSi THERMAL SPRAY DEPOSITS 237
FERVEL V., NORMAND B., CODDET C., IPSé, Laboratoire d’Etudes et et Recherches sur les Matériaux et Propriétés de Surface (LERMPS), BELFORT, FRANCE
DELAET M., Perfect Circle Europe, POISSY, FRANCE

CASE STUDY : APPLICATION OF HVOF SPRAYED COATINGS FOR REPLACEMENT OF CHROME PLATING ON NAVY P-3 AIRCRAFT HYDRAULIC COMPONENTS AND LANDING GEAR 243
PARKER D.S., Naval Aviation Depot, NAS JACKSONVILLE, FL, U.S.A.

THE TRIBOLOGY OF AMORPHOUS SURFACES FORMED BY WEAR OF THERMAL SPRAY COATINGS ... 249
SCRUGGS D.M., Amorphous Technologies International, LAGUNA NIGUEL, CA, U.S.A.
IMPROVEMENT OF WEAR PROPERTY OF NbC/HIGH Cr-HIGH Ni OVERLAY ALLOY COATING FORMED BY PLASMA TRANSFERRED ARC WELDING PROCESS .. 253
TOMITA T., OKITA K., Hyogo Prefectural Institute of Industrial Research, Technical Center for Machinery and Metals, HYOGO-KEN, JAPAN
TAKATANI Y., Hyogo Prefectural Institute of Industrial Research, Inorganic Department, HYOGO-KEN, JAPAN
HARADA Y., Tocalo Co., Ltd., KOBE, JAPAN

THE STRUCTURE PROPERTY RELATIONSHIP OF EROSION RESISTANT THERMAL SPRAY COATINGS ... 259
TUCKER R.C., ASHARI A.A., Praxair Surface Technologies, Inc., INDIANAPOLIS, IN, U.S.A.

DEVELOPMENT OF AN ELECTRIC ARC SPRAYED SELF LUBRICATING COATING 263
LLEWELLYN H., GRANT P.S., NEWBERY A.P., Oxford University, Centre for Advanced materials and Composites, OXFORD, U.K.
JORDAN R.M., Sprayform Tools & Dies, Ltd., SWANSEA, U.K.

CAVITATION EROSION RESISTANT COATINGS PRODUCED BY THERMAL SPRAYING AND BY WELD CLADDING ... 269
KREYE H., SCHWETZKE R., University of the Federal Armed Forces Hamburg, Institute for Materials Technology, HAMBURG, GERMANY
BUSCHINELLI A., BOCCANERA L., Universidade Federal de Santa Catarina, Departamento de Eng. Mecánica, FLORIANÓPOLIS, S.G., BRAZIL

WEAR EVALUATION OF PLASMA SPRAYED OXIDE AND CARBIDE COATINGS 275
DING C., LI J., ZHANG L., YU X., Chinese Academy of Sciences, Shanghai Institute of Ceramics, SHANGHAI, CHINA

WEAR PROPERTIES OF WC/Co COATINGS WITH PLASMA AND HIGH VELOCITY OXYFUEL SPRAYING ... 281
AKASAWA T., Kanagawa University, Mech. Engineering Dept., YOKOHAMA-SHI, JAPAN
AI K., Kanagawa Industrial Technology Research Institute, Materials Engineering Division, KANAGAWA-KEN, JAPAN

EFFECT OF POWDER TYPE ON THE RELATIONSHIP BETWEEN SPRAY PARAMETERS AND PROPERTIES OF HVOF SPRAYED Cr3C2-NiCr COATINGS 287
LI C.J., JI G.-C., WANG Y.-Y., Xi'an Jiaotong University, Welding Research Institute, School of Mechanical Engineering, XI'AN, SHAANXI, CHINA
SONOYA K., IHI Co., Ltd., Research Institute, Materials Department, TOKYO, JAPAN

WEAR MECHANISMS OF MCrAlY ABRADABLE PLASMA-SPRAYED COATINGS 293
LI S., LANGLADE-BOMBA C., TREHEUX D., Ecole Centrale de Lyon, UMR 5621, Ingénierie et Fonctionnalisation des Surfaces - MMP, ECOLLY, FRANCE
CRABOS F., MONGE-CADET P., Turbomeca, BORDES, FRANCE

HIGH TEMPERATURE WEAR BEHAVIOR OF PLASMA SPRAY COATING IN Co-BASED ALLOY 299
LEE S.W., Sun Moon University, Department of Materials Engineering, CHUNGNAM, KOREA

EFFECTS OF POWDER COMPOSITION ON THE EROSION, CORROSION AND EROSION-CORROSION PROPERTIES OF HVOF SPRAYED WC BASED COATINGS 305
BERGET J., BARDAL E., NTNU, Department of Machine Design and Materials Technology, TRONDHEIM, NORWAY
ROGNET T., SINTEF Materials Technology, Department of Corrosion and Surface Technology, TRONDHEIM, NORWAY
Symposium 3 : Modeling and experimental characterization of jets and deposits

PLASMA SPRAY JETS AND PLASMA-PARTICULATE INTERACTION : MODELING AND EXPERIMENTS

PFENDER E., University of Minnesota, Department of Mechanical Engineering, MINNEAPOLIS, MN, U.S.A.
CHANG C.H., NASA AMES research Center, Thermosciences Institute, MOFFET FIELD, CA, U.S.A.

OPTICAL DIAGNOSTICS AND MODELING OF GAS AND DROPLET FLOW IN WIRE ARC SPRAYING

KELKAR M., HUSSARY N., SCHEIN J., HEBERLEIN J., University of Minnesota, Department of Mechanical Engineering, MINNEAPOLIS, MN, U.S.A.

AN INTEGRATED MATHEMATICAL MODEL OF THE PLASMA SPRAYING PROCESS

MCKELLIGET J.W., University of Massachusetts, Department of Mechanical Engineering, LOWELL, MA, U.S.A.
TRAPAGA G., Massachusetts Institute of Technology, Department of Materials Science and Engineering, CAMBRIDGE, MA, U.S.A.
GUTIERREZ-MIRAVET E., Rensselaer at Hartford, HARTFORD, CT, U.S.A.
CYBULSKI M., ABB Power Plant Laboratories, Combustion Engineering Inc., WINDSOR, CT, U.S.A.

MODELING OF REACTIVE SPRAY ATOMIZATION AND DEPOSITION

DAI S., DELPLANQUE J.-P., LAVERNIA E.J., University of California, Department of Chemical and Biochemical Engineering and Materials Science, IRVINE, CA, U.S.A.
RANGEL R.H., University of California, Department of Mechanical and Aerospace Engineering, IRVINE, CA, U.S.A.

MODELING AND DIAGNOSTICS OF THE PRAXAIR HVAF COMBUSTION SPRAY PROCESS

VARACALLE D.J., Vartech, Inc., IDAHO FALLS, ID, U.S.A.
IRONS G., Praxair Thermal Spray Systems, INDIANAPOLIS, IN, U.S.A.
LALUMIERE R.J., High Velocity Technologies, Inc., WEST LEBANON, NH, U.S.A.
SWANK W.D., Inflight Ltd., Co., IDAHO FALLS, ID, U.S.A.
LAGERQUIST J., Control Vision, Inc., IDAHO FALLS, ID, U.S.A.

COMPARISON BETWEEN EXPERIMENTAL AND NUMERICAL RESULTS OBTAINED ON IN-FLIGHT PARTICLES CHARACTERISTICS

PLANCHE M.P., BOLOTR., LANDEMARRE O., CODDET C., IPSé, Laboratoire d'Etudes et de Recherches sur les Matériaux et Propriétés de Surface (LERMPS), BELFORT, FRANCE

MODELLING OF COATING THICKNESS, HEAT TRANSFER AND FLUID FLOW AND IT'S CORRELATION WITH THE TBC MICROSTRUCTURE FOR A PLASMA SPRAYED GAS TURBINE APPLICATION

NYLEN P., University Trollhattan/Uddevala, TROLLHATTAN, SWEDEN
WIGREN J., PEJRYD L., HANSSON M.-O., Volvo Aero Corporation, Combustor Division, Thermal Spray Coatings, TROLLHATTAN, SWEDEN

FE-SIMULATIONS OF TEMPERATURE AND STRESS FIELD DISTRIBUTION IN THERMALLY SPRAYED COATINGS DUE TO DEPOSITION PROCESS

LUGSCHEIDER E., Lehr- und Forschungsgebiet Werkstoffwissenschaften, AACHEN, GERMANY
BARIMANI C., ERITT U., KUZMENKOV A., Lehr- und Forschungsgebiet Werkstoffwissenschaften, WW1, AACHEN, GERMANY
PTA RECLAMATION OF CAST IRON AND ALUMINUM ALLOYS SUBSTRATE WITH NiCu FILM
DEPOSITED BY TAPE CASTING ... 373
LEYLAVERNE M., GRIMAUD A., FAUCHAIS P., Université de Limoges, Laboratoire de Matériaux Céramiques et Traitements de Surface ESA CNRS 6015, Équipe Plasma Laser Matériaux, LIMOGES, FRANCE
CHARTIER T., BAUMARD J.F., Université de Limoges, ENSCI, LIMOGES, FRANCE

SYNTHESIS AND CHARACTERIZATION OF NANOCRYSTALLINE 316-STAINLESS STEEL COATINGS
BY HIGH VELOCITY OXY-FUEL SPRAYING ... 379
LAIU M.L., JIANG H.G., LAVERNIA E.J., University of California, Department of Chemical and Biochemical Engineering and Materials Science, IRVINE, CA, U.S.A.

THE INFLUENCE OF POWDER PARTICLE VELOCITY AND TEMPERATURE ON THE PROPERTIES
OF Cr3C2-25NiCr COATING OBTAINED BY DETONATION-GUN 385
SRINIVASA RAO D., SEN D., SOMARAJU K.R.C., RAVI KUMAR S., RAVI N., SUNDARARAJAN G., International Advanced Research Center for Powder Metallurgy & New Materials, HYDERABAD, INDIA

FINITE ELEMENTS MODELING OF LIQUID PARTICLE IMPACTING ONTO FLAT SUBSTRATES 395
FENG Z.G., MONTAVON G., CODDET C., IPSé, Laboratoire d’Études et de Recherches sur les Matériaux et Propriétés de Surface (LERMPS), BELFORT, FRANCE
FENG Z.Q., DOMASZEWSKI M., IPSé, Laboratoire d’Ingénierie de Produits (LIP), BELFORT, FRANCE

FLATTENING MECHANISM IN THERMAL SPRAYED PARTICLE IMPINGING ON FLAT SUBSTRATE . 401
FUKUMOTO M., HUANG Y., OHWATARI M., Toyohashi University of Technology, Dept. of Production Systems Engineering, AICHI, JAPAN

NUCLEATION AND PHASE SELECTION IN PLASMA-SPRAYED ALUMINA : MODELING AND EXPERIMENT ... 407
ROBERT C., DENOIRJEAN A., VARDELLA A., Université de Limoges, Laboratoire de Matériaux Céramiques et Traitements de Surface ESA CNRS 6015, Équipe Plasma Laser Matériaux, LIMOGES, FRANCE

3D MODELLING OF THERMAL SPRAY DROPLET SPLASHING .. 413
BUSSMANN M., AZIZ S.D., CHANDRA S., MOSTAGHIMI J., University of Toronto, Department of Mechanical and Industrial Engineering, TORONTO, ONTARIO, CANADA

PROCESSING EFFECTS ON SPLAT FORMATION, MICROSTRUCTURE AND QUENCHING STRESS
IN PLASMA SPRAYED COATINGS ... 419
MATEJICEK J., SAPATH S., HERMAN H., SUNY at Stony Brook, Thermal Spray Laboratory (TSL), STONY BROOK, NY, U.S.A.

INTEGRATED SIMULATION OF THE ATMOSPHERIC PLASMA SPRAYING PROCESS 425
KUNDAS S., Belarus State University of Informatics and Radioelectronics, MINSK, BELARUS

NUMERICAL MODELING AND SIMULATION OF PARTICLE BEHAVIORS IN AN HVOF SUPERSONIC FLOW ... 431
YANG Y.-M., Gas Utilisation Division, R & D Center, KYUNGGI-DO, KOREA
CODDET C., IBERT M., IPSé, Laboratoire d’Études et de Recherches sur les Matériaux et Propriétés de Surface (LERMPS), BELFORT, FRANCE

MATHEMATICAL MODELING OF A PLASMA JET IMPINGING ON A FLAT STRUCTURE 439
BOLOT R., CODDET C., IBERT M., MONIN V., IPSé, Laboratoire d’Études et de Recherches sur les Matériaux et Propriétés de Surface (LERMPS), BELFORT, FRANCE
EFFECTS OF GUN NOZZLE GEOMETRY ON HIGH VELOCITY OXYGEN-FUEL (HVOF) THERMAL SPRAYING PROCESS ... 445
SAKAKI K., SHIMIZU Y., Shinshu University, Faculty of Engineering, NAGANO-SHI, JAPAN
GOUDA Y., DEVASENAPATHI A., Shinshu University, Graduate Course, NAGANO-SHI, JAPAN

NUMERICAL MODELING OF AN IMPINGING DUSTED PLASMA JET CONTROLLED BY A MAGNETIC FIELD IN A LOW PRESSURE ... 451
NISHIYAMA H., Tohoku University, Institute of Fluid Science, SANDAI, JAPAN
KUZUHARA M., Tohoku Electric Power Corp., SENDAI, JAPAN
SOLOVENKO O.P., KAMIYAMA S., Institute of Theoretical and Applied Mechanics, NOVOSIBIRSK, RUSSIA

THE FEATURES OF THE MODELLING OF HIGH-VELOCITY PULSATING JETS 457
POTAPENKO A.N., KONSTANTINOV I.S., EL-HAMMOUDANI A., SEMERNIN A.N., Technological Academy, Belgorod, BELGOROD, RUSSIA

PLASMA SPRAYING WITH ATMOSPHERE AND TEMPERATURE CONTROL: CRYOGENIC FLUX MODELING ... 461
MEILLOTE E., LEGEAY O., CEA Le Ripault, MONTS, FRANCE
RICHERT J.N., CEA, BRUYERES LE CHATEL, FRANCE

THERMAL SPRAY QUASICRYSTALLINE COATINGS. PART 1: RELATIONSHIPS AMONG PROCESSING, PHASE STRUCTURE AND SPLAT MORPHOLOGY 467
SORDELET D.J., BESSER M.F., KRAMER M.J., Iowa State University, Ames Laboratory Plasma Spray Facility, AMES, IOWA, U.S.A.

THE EFFECT OF SUBSTRATE PREHEATING AND SURFACE ORGANIC COVERING ON SPLAT FORMATION ... 473
LI C.J., LI J.-L., WANG W.-B., Xi'an Jiaotong University, Welding Research Institute, School of Mechanical Engineering, XI'AN, SHAANXI, CHINA

EFFECT OF PARTICLE-SUBSTRATE MATERIALS COMBINATIONS ON MORPHOLOGY OF PLASMA SPRAYED SPLATS ... 481
LI C.J., LI J.-L., WANG W.-B., Xi'an Jiaotong University, Welding Research Institute, School of Mechanical Engineering, XI'AN, SHAANXI, CHINA
OHMORI A., Osaka University, Joining and Welding Research Institute (JWRI), OSAKA, JAPAN
TANI K., Tocalo Co. Ltd, KOBE, JAPAN

COMPARISON OF THE BEHAVIOUR OF COPPER, CAST IRON AND ALUMINUM ALLOY SUBSTRATES HEATED BY A PLASMA TRANSFERRED ARC 489
LEYLAVERGNE M., VALETOUX H., COUDERT J.F., FAUCHAIS P., LEROUX V., Université de Limoges, Laboratoire de Matériaux Céramiques et Tractements de Surface ESA CNRS 6015, Equipe Plasma Laser Matériaux, LIMOGES, FRANCE

DROPLET FLATTENING DURING THERMAL SPRAYING AT OFF-NORMAL ANGLES 497
SOBOLEV V.V., GUILEMANY J.M., Université de Barcelona, Department of Chemical Engineering and Metallurgy, BARCELONA, SPAIN

INFLUENCE OF MECHANICAL AND THERMAL BEHAVIOUR OF STAINLESS STEEL POWDER PARTICLES DURING HIGH VELOCITY OXY-FUEL (HVOF) SPRAYING ON PROPERTIES OF COATINGS ... 503
SOBOLEV V.V., GUILEMANY J.M., MARTIN A.J., Université de Barcelona, Department of Chemical Engineering and Metallurgy, BARCELONA, SPAIN

MORPHOLOGY OF SPLATS OF THERMALLY SPRAYED COATINGS ... 507
SOBOLEV V.V., Université de Barcelona, Department of Chemical Engineering and Metallurgy, BARCELONA, SPAIN
DEPOSITION OF THICK SILICON LAYERS USING A RADIO-FREQUENCY THERMAL PLASMA

MORVAN D., KRAYEM F., MAGNAVAL S., MIRALAI S.F., AMOUROUX J., Université Pierre et Marie Curie, Laboratoire de Génie des Procédés Plasmas (ENSCP), PARIS, FRANCE
BALLUTAUD D., Laboratoire de Physique des Solides, CNRS, MEUDON, FRANCE
DRESVIN S., NGUEN KUOK SHY S., State Technical University St Petersburg, Department of Electrotechnology and Plasma Installation, ST PETERSBURG, RUSSIA

DEGRADATION OF IN-FLIGHT PMMA PARTICLES DURING THERMAL SPRAYING

ZHANG T., GAWNE D.T., BAO Y., South Bank University, School of Engineering Systems and Design, LONDON, U.K.

MATHEMATICAL AND COMPUTER MODELING OF PARTICLES INTERACTION WITH PLASMA JET IN LOW PRESSURE CONDITION

ILYUSCHENKO A., OKOVITY V., Institute of Powder Metallurgy, MINSK, BELARUS
KUNDAS S., GUREVICH V., Belarus State University of Informatics and Radioelectronics, MINSK, BELARUS

MODELING AND DIAGNOSTICS OF A NEW HIGH-VELOCITY COMBUSTION WIRE SPRAY PROCESS

VARACALLE D.J., Varitech, Inc., IDAHO FALLS, ID, U.S.A.
IRONS G., Praxair Thermal Spray Systems, INDIANAPOLIS, IN, U.S.A.
LALUMIERE R.J., High Velocity Technologies, Inc., WEST LEBANON, NH, U.S.A.
SWANK W.D., Inflight Ltd., Co., IDAHO FALLS, ID, U.S.A.
LAGERQUIST J., Control Vision, Inc., IDAHO FALLS, ID, U.S.A.

Symposium 4: Properties of coatings and characterization

PROPERTIES AND CHARACTERIZATION OF THERMAL SPRAYED COATINGS - A REVIEW OF RECENT RESEARCH PROGRESS

KURODA S., National Research Institute for Metals, Frontier Research Center for Structural Materials, Joining and Interface Research Station, IBARAKI, JAPAN

CHARACTERISTICS OF RESIDUAL STRESS PRODUCED BY MoSi2 PLASMA SPRAYING ANT ITS PRODUCTION MECHANISM

KIM Y.C., CHANG K.H., HORIKAWA K., Osaka University, Joining and Welding Research Institute (JWRI), OSAKA, JAPAN

EVALUATION OF RESIDUAL STRESSES AND FATIGUE LIFE OF TUNGSTEN CARBIDE THERMAL SPRAY COATED AIRCRAFT LANDING GEAR MATERIALS

McGRANN R.T.R., SHADLEY J.R., RYBICKI E.F., University of Tulsa, Dept. of Mechanical Engineering, TULSA, OK, U.S.A.
BODGER B.E., EMERY W.A., Southwest Aeroservice, Inc., TULSA, OK, U.S.A.
GREVING D.J., AlliedSignal Engines, PHOENIX, AZ, U.S.A.

IN SITU MEASUREMENT WITHIN PLASMA-SPRAYED ZIRCONIA COATINGS UNDER INDUSTRIAL CONDITIONS

BARADEL N., BIANCHI L., BLEIN F., FRESLON A., CEA Le Ripault, MONTS, FRANCE
JEANDIN M., Ecole des Mines de Paris/C2P - Center for Plasma Processing, EVRY, FRANCE
PEENING ACTION AND RESIDUAL STRESSES IN HVOF THERMAL SPRAYING OF 316L STAINLESS STEEL .. 569
KURODA S., National Research Institute for Metals, Frontier Research Center for Structural Materials, Joining and Interface Research Station, IBARAKI, JAPAN
TASHIRO Y., YUMOTO H., Science University of Tokyo, Department of Materials Science and Technology, CHIBA, JAPAN
TAIRA S., FUKANUMA H., Plasma Giken Go., SAITAMA, JAPAN

ANALYSIS OF RESIDUAL STRESS GENERATED DURING PLASMA SPRAYING OF GLASS COATINGS ... 575
BAO Y., ZHANG T., GAWNED T., South Bank University, School of Engineering Systems and Design, LONDON, U.K.

HIGH DAMPING CAPACITY IRON-CHROMIUM-ALUMINIUM BASED COATINGS FOR SURFACE VIBRATION CONTROL 581
KARIMI A., GIAUQUE P.H., SAGRADI M., Ecole Polytechnique Federale de Lausanne, Departement de Physique-IGA, LAUSANNE, SWITZERLAND
BARBEZAT G., SALITO A., Sulzer Metco AG, WOHNEN, SWITZERLAND

MODELING OF ELASTIC CONSTANTS OF PLASMA SPRAY DEPOSITS WITH SPHEROID-SHAPED VOIDS .. 587
LEIGH S.-H., LEE G.-C., Research Institute of Industrial Science and Technology (RIST), Nonferrous Materials Research Team, Materials Research Division, POHANG, SOUTH KOREA
BERNDT C.C., SUNY at Stony Brook, Thermal Spray Laboratory (TSL), STONY BROOK, NY, U.S.A.

SURFACE MORPHOLOGY OF PLASMA SPRAYED CERAMIC COATINGS .. 593
OKI S., GOHDA S., Kin-Ki University, OSAKA, JAPAN
YAMAKAWA M., Kumano Technical College, MIE, JAPAN

MICROSTRUCTURE STUDY OF SPINEL PLASMA COATINGS .. 599
LALLEMAND G., PAYEULLE S., TREHEUX D., Ecole Centrale de Lyon, UMR 5621, Ingénierie et Fonctionnalisation des Surfaces - MMP, ECULLY, FRANCE
ESNOUF C., INSA de Lyon, VILLEURBANNE, FRANCE

CHARACTERIZATION AND HIGH TEMPERATURE BEHAVIOUR OF THERMAL SPRAYED COATINGS USED IN BOILERS 617
HIGUERA HIDALGO V., CARRILEZ MENENDEZ A., University of Oviedo, Department Energy, GIJON, SPAIN
BELZUNCE VARELA F.J., University of Oviedo, Department of Materials Science, GIJON, SPAIN
THERMOPHYSICAL AND MECHANICAL PROPERTIES OF PYZ THICK THERMAL BARRIER COATINGS

SCHWINGEL D., TAYLOR R., UMIST - Manchester Materials Science Centre, MANCHESTER, U.K.
HAUBOLDT T., BMW, Rolls-Royce AeroEngines, OBERURSEL, GERMANY
WIGREN J., Volvo Aero Corporation, Combustor Division, Thermal Spray Coatings, TROLLHATTAN, SWEDEN
GUALCO C., Ansaldo Richerche, GENOVA, ITALY
LADRU F., LUGSCHIEIDER E., RWTH, Material Science Institute, AACHEN, GERMANY
GOURLAOUEN V., Air Liquide CTAS, SAINT OUEN L'AUMONE, FRANCE

PROPERTIES AND CHARACTERIZATION OF THERMAL SPRAY COATINGS

REINERS G., Federal Institute for Materials Research and Testing (BAM), BERLIN, GERMANY
KREYE H., SCHWETZE R., University of the Federal Armed Forces Hamburg, Institute for Materials Technology, HAMBURG, GERMANY

EVALUATION OF FATIGUE STRENGTH OF WC CERMET- AND 13Cr STEEL-SPRAYED MATERIALS AND THEIR COATINGS

OGAWA T., Aoyama Gakuin University, College of Science and Engineering, Department of Mechanical Engineering, TOKYO, JAPAN
TOKAJI K., EJIMA T., Gifu University, Faculty of Engineering, Department of Mechanical Engineering, GIFU, JAPAN
KOBAYASHI Y., HARADA Y., Tocalo Co. Ltd, KOBE, JAPAN

IMPACT EVALUATION OF PLASMA SPRAY COATINGS

SHAO T.M., XU D.J., LUO J.G., Tsinghua University, National Tribology Lab., BEIJING, CHINA
WU C.-J., Beijing Research Institute of Materials & Technology, BEIJING, CHINA

ON THE BEHAVIOR OF THICK AND POROUS COPPER DEPOSITS UNDER COMPRESSIVE STRESS

VERDY C., MONTAVON G., CODDET C., IPSé, Laboratoire d'Etudes et de Recherches sur les Matériaux et Propriétés de Surface (LERMPS), BELFORT, FRANCE

MOLECULAR AND MICRO STRUCTURE OF THERMAL SPRAYED HEAT AND CORROSION-RESISTANT PLASTIC COATINGS

KAWASE R., Ariake National College of Technology, Dept. of Chemical Science and Engineering, FUKUOKA, JAPAN

HIGH CORROSION RESISTANT IRON-BASED AMORPHOUS COATINGS OBTAINED BY THERMAL SPRAYING

OTSUBO F., ERA H., KISHITAKE K., Kyushu Institute of Technology, Faculty of Engineering, KITA-KYUSHU, JAPAN
MATSUMOTO H., Osaka Sangyo University, Faculty of Engineering, OSAKA, JAPAN

MICROSTRUCTURE AND CORROSION BEHAVIOUR OF HVOF SPRAYED NICKEL-BASED AMORPHOUS/NANOCRYSTALLINE ALLOYS

DENT A.H., HORLOCK A.J., HARRIS S.J., McCARTNEY D.G., University of Nottingham, Department of Materials Engineering and Materials Design, NOTTINGHAM, U.K.

COMPRESSION BEHAVIOUR OF PLASMA SPRAYED HIGH-ALLOY STEELS

VOLENIK K., NOVAK V., DUBSKY J., CHRASKA P., NEUFUSS K., Institute of Plasma Physics, Academy of Sciences of the Czech Republic (AVCR), PRAHA 8, CZECH REPUBLIC

STANDARDIZATION OF METALLOGRAPHIC PRACTICES FOR THERMALLY SPRAYED COATINGS IN THE AUTOMOTIVE INDUSTRY

BLANN G.A., Buehler Ltd., Laboratory Services & Materials Analysis, LAKE BLUFF, IL, U.S.A.
STUDY ON THE SPRAY PROCESSES AND CHARACTERISTICS OF Cr3C2/NiCr COATING.............. 683
LIU M., WANG D., WANG J., DAI M., ZHOU K., Guangzhou Research Institute of Nonferrous Metals (GZRINM), GUANGZHOU, CHINA

ELECTRIC AND MAGNETIC PROPERTIES OF THERMAL SPRAY COATINGS WITH AN AMORPHOUS STRUCTURE... 687
BORISOV Y., KORZHYK V., E.O. Paton Electric Welding Institute, KIEV, UKRAINE
REVO S., Kiev State University, KIEV, UKRAINE

INTERNAL STRESSES IN PLASMA COATINGS WITH AN AMORPHOUS STRUCTURE................. 693
BORISOV Y., KORZHYK V., E.O. Paton Electric Welding Institute, KIEV, UKRAINE

COMPREHENSIVE METHODS FOR STUDYING MICROINHOMOGENEITY IN THERMAL SPRAY COATINGS WITH AMORPHOUS-CRYSTALLINE STRUCTURE............... 699
GRIGORENKO G., BORISOVA A., E.O. Paton Electric Welding Institute, KIEV, UKRAINE

THERMAL SPRAY QUASICRYSTALLINE COATINGS. PART II : RELATIONSHIPS AMONG PROCESSING, PHASE ASSEMBLAGE, AND TRIBOLOGICAL RESPONSE.................. 705
DE PALO S., USMANI S., KISHI K., SAMPATH S., SUNY at Stony Brook, Thermal Spray Laboratory (TSL), STONY BROOK, NY, U.S.A.
SORDELET D.J., BESSER M.F., Iowa State University, Ames Laboratory Plasma Spray Facility, AMES, IOWA, U.S.A.

IMPROVEMENT OF ADHESION STRENGTH AND FORMATION OF VEINED STRUCTURE IN ALUMINA COATING... 711
ERA H., OTSUBO F., KISHITAKE K., Kyushu Institute of Technology, Faculty of Engineering, KITA-KYUSHU, JAPAN

CHARACTERIZATION OF STRUCTURE OF THERMALLY SPRAYED COATING....................... 717
LI C.J., HE Y., Xi'an Jiaotong University, Welding Research Institute, School of Mechanical Engineering, XI'AN, SHAANXI, CHINA
OHMORI A., Osaka University, Joining and Welding Research Institute (JWRI), OSAKA, JAPAN

EFFECT OF WC-Co ADDITION ON THE ADHESION OF HVOF Ni-BASED COATINGS................ 723
LI C.J., LI H., Xi'an Jiaotong University, Welding Research Institute, School of Mechanical Engineering, XI'AN, SHAANXI, CHINA

MICROSTRUCTURE DEVELOPMENT DURING PLASMA SPRAYING OF MOLYBDENUM.
PART 1 : SPLAT SOLIDIFICATION... 729
ROBERT C., Université de Limoges, Laboratoire de Matériaux Céramiques et Traitements de Surface ESA CNRS 6015, Equipe Plasma Laser Matériaux, LIMOGES, FRANCE
VARDELLE A., E.N.S.I.L., LIMOGES, FRANCE
WANG G.-X., JIANG X.Y., SAMPATH S., SUNY at Stony Brook, Thermal Spray Laboratory (TSL), STONY BROOK, NY, U.S.A.

MICROSTRUCTURE DEVELOPMENT DURING PLASMA SPRAYING OF MOLYBDENUM.
PART 2 : COATING MICROSTRUCTURE AND PROPERTIES...................................... 735
JIANG X.Y., SAMPATH S., SUNY at Stony Brook, Thermal Spray Laboratory (TSL), STONY BROOK, NY, U.S.A.
VARDELLE A., VARDELLE M., FAUCHAIS P., Université de Limoges, Laboratoire de Matériaux Céramiques et Traitements de Surface ESA CNRS 6015, Equipe Plasma Laser Matériaux, LIMOGES, FRANCE

THE USE OF THE SCANNING WHITE LIGHT INTERFEROMETRY TO DETERMINE THE DAMAGE PRODUCED IN WEAR TESTS... 741
GUILEMANY J.M., DE PACO J.M., MIGUEL J.R., CALERO J.A., Université de Barcelona, Department of Chemical Engineering and Metallurgy, BARCELONA, SPAIN
PHYSICO-CHEMICAL ASPECTS OF PLASMA SPRAY COATINGS

KLINSKAYA N., JILYAEV V., PANKRATOV A., Institut of Metallurgy, EKATERINBURG, RUSSIA

QUANTITIES AND PROPERTIES OF LAYERS SPRAYED WITH CORED WIRE OF TYPE Fe-Cr-C

DRZENIEK H., AMIL Werkstofftechnologie GmbH, WURSELEN, GERMANY
MILEWSKI W., Institute of Precision Mechanic, WARSAW, POLAND

Symposium 5 : Diagnostic of jets and coatings : Processes and products quality control

MEASUREMENT TECHNOLOGY FOR INFLIGHT PARTICLE DIAGNOSIS IN PLASMA SPRAYING

SCHUTZ M., BARBEZAT G., FLUCK E., Sulzer Metco AG, WOHLEN, SWITZERLAND

IN-FLIGHT PARTICLE CONCENTRATION AND VELOCITY MEASUREMENTS IN THERMAL SPRAYING USING A NON-INTENSIFIED CCD CAMERA

VATTULAINEN J., LEHTINEN T., HERNBERG R., Tampere University of Technology, Plasma Technology Laboratory, TAMPERE, FINLAND
KNUUTTILA J., MANTYLA T., Tampere University of Technology, Institute of Materials Science, TAMPERE, FINLAND

IN-FLIGHT PARTICLE CHARACTERISTICS OF PLASMA-SPRAYED DENSE YTTRIA STABILIZED ZIRCONIA

LEBLANC L., MOREAU C., National Research Council Canada, Industrial Materials Institute, BOUCHERVILLE, QUEBEC, CANADA

THE INFLUENCE OF SEVERAL POWDER FEED PARAMETERS ON FEED PRECISION AND CONTINUITY

HUANG X., XU L., MA X., FAN B., YIN X., Chinese Academy of Agricultural Mechanization Sciences, BEIJING, CHINA

EFFECT OF IN-FLIGHT PARTICLE CHARACTERISTICS ON THE PROPERTIES OF PLASMA SPRAYED NiCrAlY & NiCoCrAlY

PEIRYD L., WIGREN J., Volvo Aero Corporation, Combustor Division, Thermal Spray Coatings, TROLLHATTAN, SWEDEN
GOUGEON P., MOREAU C., National Research Council Canada, BOUCHERVILLE, QUEBEC, CANADA

ALUMINA COATINGS BY PLASMA SPRAYING OF MONOSIZE SAPPHIRE PARTICLES

ERICKSON L.C., TROCZYNSKI T., UBC - Metals & Mat. Engineering, VANCOUVER, BC, CANADA
HAWTHORNE H.M., Institute National Research Council Canada,, VANCOUVER, BC, CANADA
TAI H., ROSS D., Northwest Mettech Corp., RICHMOND BC, CANADA

INFLUENCE OF PLASMA GAS (SPRAL 22, Ar/H2) AND IMPURITIES (O2, H2O) ON THE ELECTRODE LIFETIME DURING SPRAYING

GOURLAOUEN V., REMY F., LÉGER J.M., Air Liquide CTAS , SAINT OUEN L'AUMONE, FRANCE
SATTONNET J., Air Liquide, GIS-CEPIA, CERGY PONTOISE, FRANCE
PLASMA SPRAYING USING Ar-He-H2 GAS MIXTURES

JANISSON S., VARDELLE A., COUDERT J.F., PATEYRON B., FAUCHAIS P., Université de Limoges, Laboratoire de Matériaux Ceramiques et Traitements de Surface ESA CNRS 6015, Equipe Plasma Laser Matériaux, LIMOGES, FRANCE
MEILLOT E., CEA Le Ripault, MONTS, FRANCE

OXIDATION CONTROL IN ATMOSPHERIC PLASMA SPRAYING : COMPARISON BETWEEN Ar/H2/He AND Ar/H2 MIXTURES

DENOIRJEAN A., LAGNOUX O., FAUCHAIS P., Université de Limoges, Laboratoire de Matériaux Ceramiques et Traitements de Surface ESA CNRS 6015, Equipe Plasma Laser Matériaux, LIMOGES, FRANCE
SEMBER V., Institute of Plasma Physics, Academy of Sciences of the Czech Republic (AVCR), PRAHA 8, CZECH REPUBLIC

CONTROLS FOR PLASMA SPRAYING BASED ON PLASMA JET STABILITY ANALYSIS

BEALL L., University of Minnesota, Department of Electrical Engineering, MINNEAPOLIS, MN, U.S.A.
DUAN Z., SCHEIN J., HEBERLEIN J., University of Minnesota, Department of Mechanical Engineering, MINNEAPOLIS, MN, U.S.A.
STACHOWICZ M., University of Minnesota, Department of Electrical and Computer Engineering, DULUTH, MN, U.S.A.
PLANCHE M.P., IPSé, Laboratoire d'Etudes et de Recherches sur les Matériaux et Propriétés de Surface (LERMPS), BELFORT, FRANCE

IN SITU TEMPERATURE MEASUREMENT USING EMBEDDED MICRO-THERMOCOUPLES IN VACUUM PLASMA SPRAYED MULTI-LAYERED STRUCTURES

VERDY C., SERIO B., CODDET C., IPSé, Laboratoire d'Etudes et de Recherches sur les Matériaux et Propriétés de Surface (LERMPS), BELFORT, FRANCE

A MICHELSON TYPE OF SHEAR INTERFEROMETER FOR NON DESTRUCTIVE INSPECTION OF DEBONDINGS IN STRUCTURES

MONTEIRO J., SANTOS F., CHOUSAJ L., VAZ M., SILVA GOMES J.F., LOME, Laboratory of Optics and Experimental Mechanics, PORTO CODEX, PORTUGAL

INVESTIGATION OF SUBSTRATE ROUGHNESS IN THERMAL SPRAYING BY A SCALE-SENSITIVE 3-D FRACTAL ANALYSIS METHOD

SIEGMANN S.D., Swiss Federal Laboratories for Materials Testing and Research (EMPA), THUN, SWITZERLAND
BROWN C.A., Worcester Polytechnic Institute (WPI) - ME Department, WORCESTER, MA, U.S.A.

IN-SITU OBSERVATION AND AE ANALYSIS OF MICROSCOPIC FRACTURE PROCESS OF THERMAL SPRAY COATINGS

AKITA K., ZHANG G., TAKAHASHI S., MISAWA H., Tokyo Metropolitan University, Department of Precision Engineering, TOKYO, JAPAN
TOBE S., Ashikaga Institute of Technology, TOCHIGI-KEN, JAPAN

EVALUATION OF ADHESION AND PROPERTIES OF SPRAYED COATING BY ULTRASONIC TESTING METHOD

SUGA Y., Keio University, Faculty of Science and Technology, YOKOHAMA, JAPAN
LIAN D., Chini College, Mechanical Department, TAICHUNG, TAIWAN

MEASUREMENT OF SPRAYING PARTICLE BEHAVIORS BY THREE-INTENSIFIED-SENSOR COLOR HIGH SPEED VIDEO CAMERA SYSTEM

YAMAKAWA M., Kumano Technical College, MIE, JAPAN
OKI S., GOHDA S., Kinki University, HIGASHI-OSAKA, OSAKA, JAPAN

QS-9000 - USING THE AUTOMOTIVE REQUIREMENTS TO IMPROVE EXISTING ISO 9000 SYSTEMS

YOUNG J.F., J.F. Young International Inc., ST CATHARINES, ONTARIO, CANADA