PROCEEDINGS OF
THE FOURTH INTERNATIONAL SYMPOSIUM ON
DIAGNOSTICS AND MODELING OF
COMBUSTION
IN INTERNAL COMBUSTION ENGINES

COMODIA 98
July 20 - 23, 1998
Kyoto International Conference Hall
Kyoto, Japan

SPONSORED BY
Engine Systems Division of
The Japan Society of Mechanical Engineers

CO-SPONSORED BY
The Society of Automotive Engineers of Japan
The Marine Engineering Society in Japan

IN COOPERATION WITH
Japan Internal Combustion Engine Federation
Combustion Society of Japan
The Japan Institute of Energy
Gas Turbine Society of Japan
Institute for Liquid Atomization and Spray Systems - Japan
The Visualization Society of Japan
CONTENTS

Keynote Papers

Research Issues in Passenger Car Engines .. 1
Constantine Arcoumanis
Department of Mechanical Engineering, Imperial College of Science, Technology and Medicine

Understanding How Fuels Behave in Engines ... 17
Chris Morley, R. J. Price, N. P. Tait and C. R. McDonald
Shell Research and Technology Centre at Thornton

Progress in Soot Modeling for Engines .. 25
Rudolf R. Maly, Petra Stapf and Gerhard König
Thermo- and Fluid Dynamics, Daimler-Benz AG

Modeling Engine Heat Transfer and Flame-Wall Interaction 35
Kazuie Nishiwaki
Department of Mechanical Engineering, Ritsumeikan University

Diesel Engine Combustion

Diesel Engine Combustion 1 - Controlling Combustion

Observation and Calculation of the Combustion Characteristics of a HSDI Engine: Effects of Combustion Chambers and Injection Specifications 45
L. Zhang, T. Ueda, Y. Ishii and K. Yokota
Isuzu Advanced Engineering Center, Ltd.

Effect of Pilot Injection Rate on Combustion and Trade-off in a DI Diesel Engine ... 51
M. Ishida, H. Ueki and D. Sakaguchi
Nagasaki University

Improvement of Diesel Combustion with Stratified Fuel/Water Injection System ... 57
K. Takasaki, T. Fukuyoshi and S. Abe
Kyushu University
S. Osafune
Mitsubishi Heavy Industries, Ltd.

Diesel Engine Combustion 2 - Reducing Emissions

Effect of Rich and High Turbulence Combustion on NOx and Particulate Emissions from a High Speed Direct-Injection Diesel Engine 63
C. Yang, Y. Kidoguchi and K. Miwa
The University of Tokushima
Analysis of Major Parameters in Smoke Reduction with Turbulent Jets
Aimed at Spray Flame in DI Diesel Engines
T. Araki, K. Kikuta, T. Chikahisa and Y. Hishinuma
Hokkaido University

Comparison of the Simultaneous In-Cylinder Reduction Methods for NO & SFC
by means of Re-entrainment of Burnt Products – Internal-EGR, CVCC-REABP
and Japan Furnace-HRS Combuation
S. Matsuoka
Tokyo Institute of Technology (Emeritus Professor)

Diesel Engine Combustion 3 - Reducing Emissions

Effect of High EGR with O₂ Enrichment on the Exhaust Emissions of a Diesel
Engine
H. T. C. Machacon S. Shiga, T. Karasawa and H. Nakamura
University of San Carlos Gunma University

Effect of Exhaust Gas Recirculation and Injection Pressure on Exhaust Emissions
from a Diesel Engine
M. Ikekami, T. Ishiyama, K. Nakatani, T. Ohtani and S. Nakai
Kyoto University

Reduction of Nitrogen Oxides of Diesel Engines by Exhaust-Gas-Selective
Recirculation
M. Fukuda K. Yamane
Tsuyama College of Technology The University of Shiga Prefecture
T. Neichi M. Ikekami
Mitsubishi Motors Corporation Kyoto University

Combustion Characteristics of Recycled Lubricating Oil as Diesel Fuel
K. Maeda Y. Wakuri K. Takasaki
National Fisheries University Fukuoka University Kyushu University
S. Morishita
National Fisheries University

Diesel Engine Combustion 4 - Reducing Emissions

Instantaneous Two Dimensional Visualization of Soot Concentration Profiles
in the Diesel Spray Flame
T. Kadota H. Yamasaki D. Segawa and T. Kawatsu
Osaka Prefecture University Ehime University Osaka Prefecture University
M. Tsue
University of Tokyo
Effects of Fuel Cetane Number, Density and Aromatic Content on Diesel Engine NOx Emissions at Different Operating Conditions
X. Li and Ö. L. Gülder
National Research Council Canada

Spray Combustion of Liquefied CO2 Mixed Fuel for NO and Soot Simultaneous Reduction
J. Senda T. Yokoyama M. Ikeda H. Fujimoto
Doshisha University Yanmar Diesel Co.Ltd. Doshisha University Doshisha University

Diesel Engine Combustion 5 - Modeling

Modeling of a Cracking and Auto-Ignition Process in Diesel Combustion
Y. Yoshihara and K. Nishiwaki A. Kisei
Ritsumeikan University The Shikoku Electric Power Co.,Inc.

Diesel Ignition Model Considering Charge Heterogeneity and Global Reaction Rates
Y. Itoh and N. A. Henein W. Bryzik
Wayne State University U. S. Army, TARDEC

A Multi-Zone Diesel Combustion Model Using Eddy Dissipation Concept
Bhasker T. and P. S. Mehta
Indian Institute of Technology

Diesel Engine Combustion 6 - Modeling and Heat Transfer

A Comprehensive DI Diesel Combustion Model for Multidimensional Engine Simulation
R. Tatschl, K. Pachler and E. Winklhofer
AVL LIST GmbH

An Interpretation of High Swirl Diesel Combustion Based on Optical Diagnostics and 3D Numerical Calculations
M. Astarita F. E. Corcione A. D. Maio
Istituto Motori - CNR Istituto Motori - CNR IAC - CNR
B. M. Vaglieri G. Valentino
Istituto Motori – CNR

An Evaluation of a Discrete Particle Model for Soot Formation, Growth, Transport and Oxidation in Diesel Engines
J. Abraham and V. Iyer V. Magi N. Fujita
Purdue University University of Basilicata Iwate University
Combustion and Instantaneous Heat Transfer in a Ceramic Diesel Engine
S. Simescu
Southwest Research Institute
G. L. Borman
University of Wisconsin-Madison
H. Sasaki and H. Kawamura
Isuzu Ceramics Research Institute Co., Ltd.

Diesel Engine Combustion 7 - Homogeneous Charge Compression Ignition

Combustion Mechanism Analysis with In-Chamber Gas Composition
Measurements in a Premixed Lean Compression Ignition Engine
H. Ogawa and L. Chenyu
Hokkaido University
S. Tosaka and Y. Fujiwara
Hokkaido Institute of Technology
N. Miyamoto
Hokkaido University

An Ultra-Lean Premixed Compression-Ignition Engine Concept
and its Characteristics
M. Furutani, Y. Ohta, M. Kono and M. Hasegawa
Nagoya Institute of Technology

Numerical Simulation of Premixed Lean Diesel Combustion in a DI Engine
T. Miyamoto
NEW A.C.E Institute. Co., Ltd.
A. K. Hayashi
Aoyama Gakuin University
A. Harada, S. Sasaki, H. Akagawa and K. Tsujimura
NEW A.C.E Institute. Co., Ltd.

Auto Ignition and Combustion of DME and n-Butane / Air Mixtures
in Homogeneous Charge Compression Ignition Engine
R. Takatsuto, T. Igarashi and N. Iida
Keio University

Spark Ignition Engine Combustion

SI Engine Combustion 1 - Ignition and Knock

Numerical Analysis of the Effect of Spark Components on Ignition Process
in a Quiescent Methane-Air Mixture
K. Tekawa and O. Aoki
University of Tokyo
H. Nomura and Y. Ujiie
Nihon University
M. Tsue and M. Kono
University of Tokyo

Influence of the Temperature Distribution on the Auto-Ignition in the End Gas
of Otto Engines
A. Dreizler and U. Maas
Universität Stuttgart
Two-Zone Model of Gas Thermodynamic State in SI Engines with Relevance for Knock

S. Hajireza, F. Mauss and B. Sundén
Lund Institute of Technology

SI Engine Combustion 2 - Flame Characterization

Fractal Characteristics of Turbulent Premixed Flame in a Closed Vessel and a Spark-Ignition Engine

S. Yoshiyama Y. Hamamoto E. Tomita
Okayama University Okayama Polytechnic College Okayama University
Z. Zhang
Industrial Technology Center of Okayama Prefecture

Influence of Hydrodynamic Conditions on the Early Stage of the Development of Hydrocarbon-Air Premixed Flames in a Constant Volume Combustion Chamber

T. Kageyama
Laboratoire de Combustion et de Détonique

Amplification of Turbulence in a Turbulent Premixed Flame

J. Furukawa T. Hirano
Tokyo Metropolitan Technical College University of Tokyo

SI Engine Combustion 3 – Modeling

Numerical Analysis of the Effects of Squish Geometry on a Newly Developed 4-Valve Gasoline Engine Combustion Process

H. Miyagawa, S. Kojima and N. Katsumi T. Ueda and T. Okumura
Toyota Central R&D Labs., Inc. Toyota Motor Corp.

CFD Simulation for Predicting Combustion and Pollutant Formation in a Homogeneous-Charge Spark-Ignition Engine

H. Kawahaba, M. Shioji and T. Tsunooka Y. Ali
Kyoto University UKM

Testing of a Model for Multi-Dimensional Computations of Turbulent Combustion in Spark Ignition Engines

A. Lipatnikov and J. Wallesten J. Nisbet
Chalmers University of Technology Volvo Car Corp.

Experimental Investigation and Simulation of the Formation of Formaldehyde in the Unburnt End-Gas of an Otto Engine

B. Bäuerle, F. Behrendt, E. Kull, M. Nehse and J. Warnatz
Heidelberg University
SI Engine Combustion 4 - Modeling

A Turbulent Burning Velocity Model Taking Account of the Preferential Diffusion Effect .. 249
H. Kido, M. Nakahara and J. Hashimoto
Kyushu University

Validation of SI Combustion Model over Range of Speed, Load, Equivalence Ratio and Spark Timing .. 255
B. Heel and R. Maly
Daimler Benz AG
H. G. Weller and A. D. Gosman
Imperial College of Science, Technology & Medicine

Modeling of Internal Flow and Combustion in a Four Valve Lean-Burn SI Engine .. 261
B. Delhaye and T. Duverger
PSA Peugeot Citroën

SI Engine Combustion 5 - Fluid Flows

Effect of the Inlet Manifold Geometry on Swirl Intensity at the End of Compression Stroke for Open Combustion Chamber Diesel Engine .. 269
M. M. Elkotb, H. Salem, H. El-Salmawy and F. A. Farag
Cairo University

Simulation of the Intake and Compression Strokes of a Motored 4-Valve S.I. Engine .. 275
O. Bailly, C. Buchou and A. Floch
Renault

A Study on the Effect of Engine Speed and Fuel Additives on Aldehyde Emissions in Automobile Exhaust .. 281
H.-R. Chao, T.-C. Lin and S.-Z. Tang
National Cheng Kung University
T.-L. Wu
Nan-Tai Institute of Technology

SI Engine Combustion 6 - Direct-Injection Engines

Analyses of the Combustion Process in a Direct Injection Gasoline Engine .. 287
J. M. Kech, J. Reissing, J. Gindele and U. Spicher
Institut für Kolbenmaschinen Universität Karlsruhe

Two-Stage Combustion for Quick Catalyst Warm-up in Gasoline Direct Injection Engine .. 293
K. Kuwahara, S. Yamamoto, K. Iwachidou and H. Ando
Mitsubishi Motors Corp.

Combustion Control of a Gasoline DI Engine Using Enhanced Gas Motion .. 299
Y. Moriyoshi, Y. Saisyu and M. Nagashima
Chiba University
LIF Visualization of In-cylinder Mixture Formation in a Direct-Injection SI Engine
A.Kakuhou, T. Urushihara, T. Itoh and Y. Takagi
Nissan Motor Co., Ltd.

Intake Flow Effects on Fuel Sprays for Direct-Injection Spark-Ignited Engines
S. E. Parrish, P. V. Farrell
Outboard Marine Corporation, University of Wisconsin-Madison

SI Engine Combustion 7 - Direct-Injection Engines

Quantitative 2-D Fuel Distribution Measurements in a Direct-Injection Gasoline Engine Using Laser-Induced Fluorescence Technique
T. Fujikawa, Y. Hattori, K. Akihama and M. Koike
Toyota Central R&D Labs., Inc.
T. Kobayashi and S. Matsushita
Toyota Motor Corp.

Simulation of the Effect of Wakes behind Fuel Dropletson Fuel Vapor Diffusion in Direct-Injection SI Engines
J. Yang, J. Yi and R. W. Anderson
Ford Motor Company

Performance of a Stratified Charge Spark Ignition Engine with an Injection of Different Fuels
S. H. El-Emam and Y. E. Abdel-Ghaffar
Mansoura University

3D Modeling of Intake, Injection and Combustion in a DI-SI Engine under Homogeneous and Stratified Operating Conditions
J.-M. Duclos and M. Zolver
Institut FRANÇAIS du Pétrole

SI Engine Combustion 8 - Combustion Characteristics

Flame Propagation in an SI Engine with a Non-Conventional Igniter
P. Higelin, C. Mounaïm-Rousselle, O. Pajot, C. Robinet and B. Moreau
Laboratoire de Mécanique et Énergétique - Université d'Orléans

Effects of Charge Composition on SI Engine Cyclic Variations at Idle
P. C. Hinze and W. K. Cheng
Massachusetts Institute of Technology

Lean Operating Limit of Spark Ignition Engine Fuelled with Different Homogeneous Mixtures
A. Kowalewicz, G. Pawlak and A. Rózycki
Radom Technical University
Diagnostics

Diagnostics 1 - LIF and LII

LIF Imaging of Diesel Spray Combustion
H. Nakagawa, H. Endo and Y. Deguchi
Mitsubishi Heavy Industries, Ltd.
T. Shimada and Y. Takeda
Mitsubishi Motors Corporation

Simultaneous LIF Imaging of Fuel and OH in Constant Volume Combustion Chamber with a Prechamber
M. Tamura, H. Tai and T. Sakurai
Tokyo Gas Co., Ltd.

Quantitative Soot Concentration Measurement with the Correction of Attenuated Signal Intensity Using Laser-Induced Incandescence
K. Inagaki and K. Nakakita
Toyota Central R&D Labs.
S. Miura and S. Watanabe
Toyota Motor Corp.

Diagnostics 2 - Laser Measurements and Imaging

Mixture Formation and Combustion of a Four-Valve SI Engine Investigated by Advanced Two-Dimensional Laser Measurement Techniques
M. Wensing, H. Krämer, K. -U. Münch and A. Leipertz
University of Erlangen – Nürnberg

Two-Dimensional Imaging of Ignition Processes in a Transient Fuel Spray
H. Kosaka and V. H. Drewes
Tokyo Institute of Technology
L. A. Chisari and G. D. Martino
University of Catania
T. Kamimoto
Tokyo Institute of Technology

Flame Visualization in the Proximity of a Wall in an S.I. Engine
T. Steiner and K. Boulouchos
Swiss Federal Institute of Technology

Diagnostics 3 - Radical Emission and Laser Measurements

Radical Emission and Fluorescence Measurements in Pulsed Flame Jet
E. Murase, K. Hanada and J.-H. Yun
Kyushu University
A. K. Oppenheim
University of California at Berkeley

Analysis of OH Radical Emission Intensity during Autoignition in a 2-Stroke SI Engine
S. Hashimoto, Y. Amino, K. Yoshida, H. Shoji and A. Saima
Nihon University
Local Chemiluminescence Measurement for Flame Propagation Analysis

Y. Ikeda, S. Ichi, H. Nakai and T. Nakajima
Kobe University

Fuel Sprays

Fuel Sprays 1 - Diesel Sprays

Numerical Modeling for Evaporating Spray Dynamics in High-Pressure Environment

Y. W. Moon, Y. W. You and Y. W. Kim
Hanyang University
S. W. Kim
Korea Academy of Industrial Technology

Penetration Model of a Diesel Spray along a Wall

T. Ebara, K. Amagai and M. Arai
Gunma University

Investigation of the Diesel Spray Break-Up Close to the Nozzle at Different Injection Conditions

A. Fath, C. Fettes and A. Leipertz
University of Erlangen-Nürnberg

Fuel Sprays 2 - Diesel Sprays

Quantitative Analysis of Vapor Phase Structures in Transient Liquid Fuel Sprays

F. Rabenstein, J. Egermann and A. Leipertz
University of Erlangen-Nürnberg

Effect of Fuel Injection Rate Shaping on Spray Combustion
- Effect of the Slope of Injection Rate Rise on Combustion

Y. Wakisaka, A. Azetsu and C. Oikawa
The University of Tokyo

Design and Characterization of a Novel Laser Speckle Detection System for Fuel Spray Visualization in Passenger Car DI Diesel Engines

M. Stoeckli and B. Ineichen
Swiss Federal Institute of Technology

Combustion Characteristics of the Spray Impinging on a Glow Plug

K. Park
D. J. Kim
Korea Institute of Machinery and Materials
Pusan National University
Fuel Sprays 3 - Diesel Sprays

Numerical Analysis of Diesel Sprays Impinging on Combustion Chamber Walls by Means of a Discrete Droplet/Liquid-Film Model ... 459

T. Wakisaka
Kyoto University

S. Takeuchi
MMC Computer Research Ltd.

F. Imamura
Kyoto University

K. Ibaraki
Mitsubishi Motors Corp.

Y. Isshiki
Setsunan University

Spray Characteristics and Near Injector Tip Effects of Injection Pressure and Ambient Density .. 465

C. T. Chang and P. V. Farrell
University of Wisconsin-Madison

Transient Characterisation of High-Pressure Diesel Sprays 471

T. Dan
Japan Society for the Promotion of Science

M. Lai, T. Wang and X. Xie
Wayne State University

Fuel Sprays 4 - Diesel Sprays

Effect of Common Rail Injector Design on the Emission Characteristics of Passenger Car DI Diesel Engines .. 477

G. Renner, K. Koyanagi and R. R. Maly
Daimler-Benz AG

Analysis of Spatial Dispersion Characteristics of Improved Conical Sprays 483

W. Long
Japan Automobile Research Institute

A. Murakami and J. Hama
Mechanical Engineering Laboratory, AIST, MITI

T. Obokata
Gunma University

Diesel Injection-System Simulation at Part Loads under Steady-State and Transient Operations .. 489

A.E. Catania, C. Dongiovanni, A. Mittica, C. Negri and E. Spessa
Dipartimento di Energetica-Politecnico di Torino

Fuel Sprays 5 - Gasoline Sprays

Laser-Based Techniques Employed on Gasoline Swirl Injector 499

M. Ismaillov, T. Ishima and T. Obokata
Gunma University

M. Tsukagoshi and K. Kobayashi
Unisia JECS Co., Ltd.

The Effect of Fuel Volatility on Sprays from High-Pressure Swirl Injectors 505

B. A. VanDerWege and S. Hochgreb
Massachusetts Institute of Technology
Techniques for Enhancing the Observation of PFI Spray Patterns in a Bench-Top Spray Rig

P. O. Witze and R. M. Green
Sandia National Laboratories

Cytofluid Dynamic Theory of Fuel Atomization Processes

K. Naitoh
Nissan Motor Co., Ltd.

Improvement of Fuel Behavior Model for Port-Injection Gasoline Engines

- Spray Boundary Conditions and Multicomponent Fuel Vaporization Model

M. Nagaoka, H. Miyagawa and K. Ohsawa T. Yamada
Toyota Central R&D Labs., Inc. Toyota Motor Corp.

Alternative Fuels

Alternative Fuels 1 - Fuel Injection and Combustion

High Speed Pulsed Injection of Natural Gas

W. Janach, P. Zuber and K. Heini
Lucerne Technical University

Spray and Ignition Characteristics of Dimethyl Ether Injected by a D.I. Diesel Injector

K. Wakai, K. Nishida, T. Yoshizaki H. Hiroyasu
University of Hiroshima Kinki University

Combustion and Emission Characteristics in a Direct Injection Natural Gas Engine Using Multiple Stage Injection

Y. Goto, Y. Sato and K. Narusawa
Traffic Safety Nuisance Research Institute, Ministry of Transport

A Study on In-Cylinder Injection Technology and Combustion Characteristics of the Natural Gas Engine

Z. Fang and J. Ping S. Hou and J. Sun
NECL, Tianjin University Jilin University of Technology

Alternative Fuels 2 - Combustion Modeling

Combustion and Exhaust Gas Emissions Characteristics of a Diesel Engine Dual-Fueled with Natural Gas

J. Kusaka, Y. Daisho, R. Kihara and T. Saito S. Nakayama
Waseda University Toyota Motor Co.
Multi-Dimensional Modeling of Nitric Oxide Formation in Direct Injection Natural Gas Engines

A. Agarwal and D. N. Assanis
University of Michigan

Homogeneous Charge Compression Ignition Engine: Experiments and Detailed Kinetic Calculations

P. Amnéus, D. Nilsson, F. Mauss, M. Christensen and B. Johansson
Lund Institute of Technology

Index of Authors

561 567 573