MONDAY, SEPTEMBER 14, 1998

ORGANIC EL MATERIALS I

STRONGLY DIRECTED PURE RGB EMISSIONS IN ORGANIC EL DEVICES (Invited)
S. Tokito and Y. Taga, Toyota Central Research and Development Laboratories, Inc., Japan

SPIROS, SPIROS-SPIROS, AND OTHER NOVEL AMORPHOUS MATERIALS FOR BLUE ELECTROLUMINESCENCE (Invited)
F. Weissortel, K.-H. Weinfurtner, and J. Salbeck,
Max Planck Institute for Polymer Research, Germany
N. Yu, Aventis Research & Technologies GmbH & Co., Germany

RED-EMITTING ORGANIC EL DEVICES WITH NOVEL DOPANTS (Invited)
Y. Sato, T. Ogata, and Y. Murata, Mitsubishi Chemical Corp., Japan

COLOR TUNING IN ORGANIC LEDs (Invited)
M. E. Thompson, A. Shoustikov, Y. You, and Y. K. He, University of Southern California

ORGANIC THICK-FILM LEDs (Invited)
C. Adachi, A. Yamamori, M. Nagawa, T. Koyama,
and Y. Taniguchi, Shinshu University, Japan

ORGANIC EL DEVICES USING NOVEL AMORPHOUS MOLECULAR CHARGE-TRANSPORT AND EMITTING MATERIALS (Invited)
Y. Shirota, Osaka University, Japan

EFFECTS OF REVERSE-BIAS ON DEVICE PERFORMANCE IN ORGANIC LEDS (Invited)
D. Zou, M. Yahiroti, and T. Tsutsui, Kyushu University, Japan

ORGANIC EL MATERIALS II

BRIGHT EXCIPLEX ELECTROLUMINESCENCE IN LOW-MOLECULAR-WEIGHT LEDs
H. Nikol, H. Boerner, W. Busselt, T. Jüstel, and C. R. Ronda,
Philips Research Laboratories, Germany
ORGANIC MULTICOLOR LEDs SUPERIMPOSED USING THERMAL CVD
K. Yamashita, T. Mori, and T. Mizutani, Nagoya University, Japan

EFFICIENT SATURATED RED EMISSION FROM A PHOSPHORESCENT DOPED ORGANIC LIGHT-EMITTING DEVICE
M. E. Thompson, University of Southern California

CHARACTERISTICS OF EMISSIVE BEHAVIORS OF THE ORGANIC LUMINESCENT DEVICES WITH RESONATOR STRUCTURES
T. Nakayama, Japan Science & Technology Corp., Japan
K. Yamamoto, Kyushu University, Japan
T. Tsutsui, Japan Science & Technology Corp. and Kyushu University, Japan

HIGHLY EFFICIENT AND THERMALLY STABLE OLEDs
H. Murata, H. Mattoussi, C. D. Merritt, and Z. H. Kafafi, Naval Research Laboratory
H. Inada and Y. Shirotta, Osaka University, Japan

Late-News Paper: ORGANIC-INORGANIC INSULATOR MIXED BUFFER LAYER FOR EFFICIENT AND BRIGHT OLEDs BASED ON ALUMINUM CATHODES
G. E. Jabbour, M. M. Morrell, S. E. Shaheen, B. Kippelen, and N. Peyghambarian, University of Arizona

POSTER SESSION: ORGANIC EL MATERIALS AND DEVICES

INTERFACE ANALYSIS OF NATHYL-SUBSTITUTED BENZIDINE DERIVATIVE AND TRIS-8 (HYDROXYQUINOLINE) ALUMINUM USING UV AND X-RAY PHOTOEMISSION SPECTROSCOPY
E. W. Forsythe, Q. T. Le, V.-E. Choong, and Y. Gao, University of Rochester
C. W. Tang, Eastman Kodak Co.

THE INFLUENCE OF THE ITO/HTL INTERFACE ON THE DEVICE PERFORMANCE OF OLEDs
C. Giebeler, University of Sheffield, UK and Hewlett-Packard Laboratories
D. D. C. Bradley, University of Sheffield, UK
H. Antoniadis, Hewlett-Packard Laboratories
Y. Shirotta, Osaka University, Japan
ALKALINE METAL COMPLEXES AS AN ELECTRON-INJECTING LAYER 57
IN ORGANIC EL DEVICES
J. Endo and T. Matsumoto, IMES Co., Ltd., Japan
J. Kido, Yamagata University, Japan

OELDs USING POLY(N-VINYLCARBAZOLE) AND NOVEL ELECTRON-TRANSPORT MATERIALS
M. Uekawa, Y. Miyamoto, H. Ikeda, and K. Kaifu,
Oki Electric Industry Co. Ltd., Japan
T. Nakaya, Osaka City University, Japan

CARRIER-TRANSPORT MECHANISMS IN OELDs 63
J. Shen and J. Yang, Arizona State University
J.-H. Xu, F. So, and H.-C. Lee, Motorola

ELECTROLUMINESCENT PROPERTIES OF AN OLED DOPED WITH TWO DYSES
H. G. Kim, T. Mori, and T. Mizutani, Nagoya University, Japan

ELECTROLUMINESCENT PROPERTIES OF OLED DOPED WITH TCNQ ELECTRON-INJECTION LAYER
K. Imaizumi, T. Mori, and T. Mizutani, Nagoya University, Japan

MULTICOLOR OLED USING THE PHOTO-ISOMERIZING METHOD 75
H. Tsuge, T. Mori, and T. Mizutani, Nagoya University, Japan

ELECTROLUMINESCENT PROPERTIES OF OLED WITH NEW BENZOXAZOLE DERIVATIVES
Y. Nishio, K. Imaizumi, Y. Kouichi, T. Mori,
and T. Mizutani, Nagoya University, Japan
H. Miyazaki, Nippon Steel Chemical Co., Ltd., Japan

STEADY-STATE TRANSIENT CURRENT-VOLTAGE CHARACTERIZATION 83
OF OLEDs
B. J. Norris, J. P. Bender, and J. F. Wager, Oregon State University

OLED MODELING VIA SPICE ... 87
J. P. Bender, B. J. Norris, and J. F. Wager, Oregon State University

IMPROVED LIFETIME AND EFFICIENCY OF OLEDs USING A NEW FABRICATION TECHNIQUE
D. Metzdorf, A. Böhler, S. Dirr, H.-H. Johannes, H. Neuner, J. Schöbel,
and W. Kowalsky, Institut fuer Hochfrequenztechnik, Germany
EUROPIUM-CHELATE-BASED MICROACTIVITY OLEDs WITH A GUEST-HOST EMISSION LAYER
T. Benstem, S. Dirr, A. Böhler, H.-H. Johannes, and W. Kowalsky,
Institut fuer Hochfrequenztechnik, Germany

SYNTHESIS AND CHARACTERIZATION OF AMORPHOUS MACROCYCLIC OLIGOMER FOR EL APPLICATIONS
X. Tao, S. Maruyama, Y. D. Zhang, T. Wada, and H. Sasabe,
Institute of Physical and Chemical Research, Japan
H. Suzuki, T. Watanabe, and S. Miyata, Tokyo University of Agriculture and Technology, Japan

ORGANIC LIGHT-EMITTING DEVICES CONTAINING HIGH-GLASS-TRANSITION-TEMPERATURE HOLE TRANSPORT LAYERS
B. E. Koene, D. E. Loy, and M. E. Thompson, University of Southern California

CHARGE INJECTION INTO OLEDs DURING OPERATION STUDIED BY ELECTROABSORPTION SCREENING
C. Giebeler, S. J. Martin, P. A. Lane, and D. D. C. Bradley, University of Sheffield, UK
M. Liess, Consiglio Nazionale delle Ricerche, Italy
P. L. Burn and G. Webster, University of Oxford, UK

PVCz MULTI-LAYERED EL DEVICES PREPARED BY SPIN COATING
M. Kitagawa, H. Kusano, S. Kawakami, N. Shiraiishi, K. Ichino, and H. Kobayashi, Tottori University, Japan

DEGRADATION OF TRIS-(8-HYDROXY QUINOLINE) ALUMINUM-BASED LEDS
Q. T. Le, F. M. Avendano, E. W. Forsythe, L. Yan, and Y. Gao, University of Rochester
C. W. Tang, Eastman Kodak Co.

EXCIPLEX EMISSION AND QUENCHING BY MOLECULAR DOPING IN EL DEVICES
C. D. Merritt, H. Murata, and Z. H. Kafafi, Naval Research Laboratory

Late-News Poster: INVESTIGATION OF TRAP STATES IN SrS:Cu USING THERMOLUMINESCENCE TECHNIQUES
D. R. Evans, H. Yuan, W. M. Yen, and W. M. Dennis, University of Georgia
S.-S. Sun, Planar America
Late-News Poster: POLYMER LEDs: MANUFACTURING AND TESTING 123
H. Spreitzer, H. Becker, E. Kluge, W. Kreuder, H. Schenk, and
N. Yu, Aventis Research & Technolgies GmbH & Co., Germany

Late-News Poster: HYBRID SOL-GEL MICRO-PATTERNING OF OLEDs 127
J. T. Rantala, G. E. Jabbour, S. Honkanen, and B. Kippelen, University of Arizona
J. Vähäkangas, VTT Electronics, Finland

Late-News Poster: LOW-ONSET ORGANIC BLUE LEDs OBTAINED 131
BY BETTER INTERFACE CONTROL
N. Koch, A. Pogantsch, E. J. W. List, M. Wuchse,
and G. Leising, Technische Universität Graz, Austria
R. I. R. Blyth and M. G. Ramsey, Karl Franzens Universität Graz, Austria

TUESDAY, SEPTEMBER 15, 1998

ORGANIC EL DEVICES

HIGH-EFFICIENCY-POLYMER LEDs (Invited) 133

OLED FULL-COLOR PASSIVE-MATRIX DISPLAY (Invited) 137
S. Miyaguchi, S. Ishizuka, T. Wakimoto, J. Funaki, Y. Fukuda, H. Kubota,
K. Yoshida, T. Watanabe, H. Ochi, T. Sakamoto, and M. Tsuchida,
Pioneer Electronic Corp., Japan
I. Oshita and T. Tohma, Tohoku Pioneer Electronic Corp., Japan

PHOTOEMISSION STUDIES OF THE INTERFACE BETWEEN 141
TRIS-(8-HYDROXY QUINOLINE) ALUMINUM AND REACTIVE METALS (Invited)
V.-E. Choong, Motorola Applied Research Center
T. C. Le, L. Yan, and Y. Gao, University of Rochester

ORGANIC-INORGANIC MULTILAYER STRUCTURES: A NOVEL ROUTE 145
TO HIGHLY EFFICIENT OLEDs (Invited)
P. Seidler, W. Ries, and H. Vestweber, IBM Zurich Research Laboratory, Switzerland

DUAL-COLOR POLYMER LIGHT-EMITTING PIXELS PROCESSED BY 147
INK-JET PRINTING (Invited)
S.-C. Chang, J. Bharathan, and Y. Yang, UCLA
FULL-COLOR ORGANIC EL DISPLAY (Invited) ... 151
C. Hosokawa, M. Eida, K. Fukuoka, H. Tokailin, H. Kawamura, T. Sakai,
and T. Kusumoto, Idemitsu Kosan Co., Ltd., Japan

A TRANSPARENT COLOR-TUNABLE ORGANIC LIGHT-EMITTING DEVICE 155
G. Gu, G. Parthasarathy, and S. R. Forrest, Princeton University

A LIQUID-CRYSTAL PROJECTOR UTILIZING ORGANIC EL ELEMENTS 159
WITH MICROCAVITIES AS LIGHT SOURCES
O. Yokoyama, S. Miyashita, and T. Shimoda, Seiko-Epson Corp., Japan
S. Tokito, K. Noda, and Y. Taga, Toyota Central R&D Labs, Japan

INORGANIC EL DEVICES

INORGANIC VERSUS ORGANIC LEDs: A COMPARISON (Invited) 163
R. Moon, Hewlett-Packard Labs

COLOR TFEL (Invited) ... 165
E. Soininen, Planar International, Ltd., Finland

MULTICOLOR TFEL DISPLAYS FOR AUTOMOTIVE APPLICATION (Invited) 167
S. Kanda, M. Katayama, N. Ito, and T. Hattori, Denso Corp., Japan

PRESENT STATUS OF ACTIVE-MATRIX EL DISPLAYS (Invited) 171
R. T. Tuenge, Planar Systems

MICROACTIVITY ACTION IN ELECTROLUMINESENCE AND
CATHODOLUMINESENCE .. 175

WEDNESDAY, SEPTEMBER 16, 1998

INORGANIC EL MATERIALS I

IMPROVED SrS:Ce TFEL BLUE PHOSPHOR (Invited) 179
G. Liu, T. Xiao, K. Lobban, and X. Wu, The Westaim Corp., Canada

BLUE-EMITTING SrS:Ag,Cu TFEL DEVICES (Invited) 183
S.-S. Sun, Planar America
PHOTOLUMINESENCE AND ELECTROLUMINESENCE STUDIES ON Cu- 187
AND Ag-DOPED SrS ACTFEL DEVICES
U. Troppenz, B. Hüttl, U. Storz, P. Kratzert, and K.-O. Velthaus,
Heinrich-Hertz Institut, Germany
S.-S. Sun and D. Tuenge, Planar America

EVAPORATION AND CHARACTERIZATION OF SrS:Cu,Ag EL DEVICES 191
H. M. Menkara, W. Park, M. Chaichimansour, T. C. Jones, B. K. Wagner,
and C. J. Summers, PTCOE/Georgia Institute of Technology
S.-S. Sun, Planar America

OXIDE PHOSPHOR TFEL DEVICES USING THICK INSULATING 195
CERAMIC SHEETS (Invited)
T. Minami, Kanazawa Institute of Technology, Japan

TFEL OXIDE PHOSPHORS (Invited) 199
A. Kitai, McMaster University, Canada

IMPROVED WHITE TFEL PHOSPHORS USING SrS:Cu 203
S. Moehnke, M. Bowen, S.-S. Sun, and R. T. Tuenge, Planar Systems

FIRST PRINCIPLE MODELING OF ELECTRONIC TRANSPORT IN 207
WIDE-BANDGAP PHOSPHOR MATERIALS
M. Diir, M. Saraniti, and S. M. Goodnick, Arizona State University
R. Redmer, M. Reigrotzki, and N. Fitzer, University of Rostock, Germany
M. Städle and P. Vogl, Technical University of Munich, Germany

INORGANIC EL MATERIALS II

Ce³⁺ LUMINESCENT CENTERS IN ALE SrS TFEL DEVICES 211
C. Barthou, P. Benalloul, and P. Benoit, Université Pierre et Marie Curie, France
A. Garcia and C. Fouadssier, CNRS, France
E. Soininen and R. Törnqvist, Planar International, Ltd., Finland

LUMINESCECE PROPERTIES OF SrS:Cu,Ag TFEL PHOSPHORS 215
W. Park, T. C. Jones, E. Mohammed, and C. J. Summers,
PTCOE/Georgia Institute of Technology
S.-S. Sun, Planar America
BLUE-EMITTING SrS:Cu TFEL DEVICES PREPARED BY HOT-WALL DEPOSITION TECHNIQUE
K. Ohmi, K. Yamabe, H. Fukada, T. Fujiwara, S. Tanaka, and H. Kobayashi, Tottori University, Japan

IMPROVING ALE SrS:Ce PHOSPHOR BY CODOPING

IMPROVED BRIGHTNESS AND EFFICIENCY IN EL THIN-FILM PHOSPHORS BY FLUXING
J. Lewis, K. E. Waldrip, M. R. Davidson, D. Moorehead, and P. H. Holloway, University of Florida
S.-S. Sun, Planar Systems

Late-News Paper: LOW-TEMPERATURE DEPOSITION FOR SrS:Cu,Ag
K.-O. Velthaus, B. Hüttl, U. Troppenz, T. Gaertner, and G. Bilger, Heinrich-Hertz Institute, Germany

POSTER SESSION: INORGANIC EL MATERIALS & DEVICES AND FEDs

SPUTTER DEPOSITION OF Mg,Zn,S:Mn FOR EL PHOSPHORS
M. R. Davidson, K. E. Waldrip, J. Lewis, D. Moorehead, E. Lambers, and P. H. Holloway, University of Florida
S.S. Sun, Planar Systems

MOCVD OF ZnS:Mn FILMS FOR TFEL DEVICES
A. Topol, H. Efstathiadis, G. Nuesca, S. Lane, B. Taylor, K. Barth, J. Lau, G. Peterson, and A. E. Kaloyeros, University of Albany
R. T. Tuenge and C. N. King, Planar America

INFLUENCE OF Hg-LAMP IRRADIATION DURING ELECTRON-BEAM EVAPORATION CHARACTERISTICS OF ZnS:Mn TFEL DEVICES
N. A. Vlasenko, Ya. F. Kononets, Yu. V. Kopytko, L. I. Veligura, and Z. L. Denisova, Institute of Semiconductor Physics, Ukraine
A. A. Vdovenkov, Kiev Institute of Microdevices, Ukraine
NEW DATA CONCERNING LUMINESCENCE MECHANISM IN SrS:Cu 247
(Ag,Ga) TFEL DEVICES
Z. L. Denisova, Y. F. Kononets, L. I. Veligura, and N. A. Vlasenko,
Institute of Semiconductor Physics, Ukraine
E. Soininen, Planar International, Ltd., Finland
S.-S. Sun, Planar America

SrS:Cu TFEL DEVICES GROWN BY ELECTRON-BEAM DEPOSITION 251
S. S. Lee, S. Lim, and G. K. Chang, Dankook University, Korea

EFFECTS OF ANNEALING TIME ON THE LONG-TERM CONDUCTION 255
BEHAVIOR OF WHITE-LIGHT-EMITTING ZnS:Pr,Ce FILMS
Institute of Science and Technology, Korea
M.-Y. Sung, Korea University, Korea

CODOPING OF ALE SrS:Ce and SrS:Cu THIN FILMS BY ION IMPLANTATION
W.-M. Li, M. Ritala, M. Leskelä, and R. Lappalainen, University of Helsinki, Finland
E. Soininen, Planar International, Ltd., Finland
L. Niinistö, Helsinki University of Technology, Finland
C. Barthou, P. Benalloul, and J. Benoit, Université Pierre et Marie Curie, France

A NOVEL ALE PROCESS FOR SrS:Ce ... 263
J. Ihanus, T. Hänninen, M. Ritala, and M. Leskelä, University of Helsinki, Finland

MICROACTIVITY ZnS:Mn EL DEVICES: SIMULATION AND EXPERIMENTAL RESULTS
J. M. Frigerio, K. Nelep, C. Barthou, and P. Benalloul,
Université Pierre et Marie Curie, France

TRAPPED CARRIERS RELAXATION IN SrS:Ce$^{3+}$ EL DEVICES 271
C. Barthou, J. Benoit, and P. Benalloul, Université Pierre et Marie Curie, France
E. Nykänen, M. Leskelä, and L. Niinistö, Helsinki University of Technology, Finland

GREEN SrGa$_2$S$_4$:Eu$^{2+}$ TFEL DEVICES .. 275
P. Benalloul, C. Barthou, and J. Benoit, Université Pierre et Marie Curie, France

DOES LATERAL TRANSMISSION IN A ZnS:Mn TFEL DEVICE HAVE POTENTIAL FOR “LASER” PRINTING?
M. R. Craven, W. M. Cranton, R. Stevens, and C. B. Thomas,
Nottingham Trent University, UK
LUMINESCENT CHARACTERISTICS OF Cu⁺ CENTERS IN SrS 323
THIN FILMS PREPARED BY HOT-WALL DEPOSITION
H. Fukada, K. Yamabe, T. Fujiwara, K. Ohmi, S. Tanaka,
and H. Kobayashi, Tottori University, Japan
N. Yamashita, Okayama University, Japan

TEMPERATURE DEPENDENCE OF DYNAMIC SPACE CHARGE IN 327
SrS:Ce TFEL DEVICES
M. Peter, M. Murayama, S. Nishimura, K. Ohmi, S. Tanaka,
and H. Kobayashi, Tottori University, Japan

FROM BLUE TO RED: CHROMATIC CONTROL IN Cu:SrS and Mn:ZnS 331
D. Li and D. A. Keszler, Oregon State University

THE POTENTIAL OF SrS:Ce³⁺ AS AN ELECTROLUMINESCENT 335
PHOSPHOR
B. Hüttl, U. Troppenz, S. Richter, and K.-O. Velthaus, Heinrich-Hertz Institut, Germany

MBE GROWTH OF SrS:Cu ... 339
W. Tong, Y. Xin, M. Chaichimansour, J. Choi, T. Jones,
W. Park, B. K. Wagner, and C. J. Summers, PTCOE/Georgia Institute of Technology
S.-S. Sun, Planar America

Late-News Poster: SPECTROSCOPY AND PHOTOCONDUCTIVITY 343
MEASUREMENTS ON BULK ALKALINE-EARTH SULFIDE PHOSPHORS
J. Choi, L. Lu, W. M. Yen, and U. Happek, University of Georgia
J. Kane, Sarnoff Corp.

Late-News Poster: MEDIUM-TERM REVERSIBLE-AGING (MEMORY) 345
EFFECT IN ALE GROWN ZnS:Mn
B. Aitchison, T. Nguyen, and S. Robinson, Planar Systems

FEDs

CHARACTERIZATION OF FED PHOSPHORS FOR HIGH-CURRENT 353
OPERATION

CHARACTERIZATION OF LUMINESCENT MATERIALS AND DEVICES 357
T. Welker, University of Applied Sciences, Köln, Germany
THERMODYNAMIC MODELING OF THE COMBUSTION SYNTHESIS OF 361
BARIUM MAGNESIUM ALUMINATE
C. F. Bacalski, G. A. Hirata, and J. M. McKittrick,
University of California at San Diego

ABOUT THE POSSIBILITIES OF DIRECT STUDY OF ELECTRON-
PHONON INTERACTIONS IN DEEP-LEVEL STATES
V. Gavryushin, A. Kazlauskas, and G. Raciukaitis, Vilinus University, Lithuania

THICKNESS AND PERFORMANCE OF PHOSPHOR LAYER EXCITED BY 365
LOW-ENERGY ELECTRONS
S. A. Bukesov, N. V. Nikishin, A. A. Strel'tsov, A. O. Dmitrienko, and
S. L. Shmakov, Saratov State University, Russia

THURSDAY, SEPTEMBER 17, 1998

FED PHOSPHORS: PROPERTIES

CURRENT STATUS OF FEDs (Invited) N/A
B. E. Gnade, DARPA

ELECTROLUMINENCE VERSUS CATHODOLUMINENCE 369
Hewlett-Packard Laboratories

CATHODOLUMINENCE OF THIOGALLATES 373
B. R. Natarajan, J. C. Conway, R. Mueller-Mach, and
G. O. Mueller, Hewlett-Packard Laboratories

MONTE CARLO ELECTRON-TRAJECTORY PENETRATION DEPTH 377
CALCULATIONS FOR PHOSPHORS
P. A. Manigault, C. Staffers, B. K. Wagner, and C. J. Summers,
PTCOE/Georgia Institute of Technology

POTENTIAL CHANGE ON PHOSPHOR SURFACE UNDER EXCITATION 381
WITH LOW-ENERGY ELECTRON BEAM
H. Kominami, K. Horikawa, T. Aoki, T. Nakamura, Y. Nakanishi,
and Y. Hatanaka, Shizuoka University, Japan

DEVELOPING STANDARDS AND PROTOCOLS FOR CL CHARACTERIZATION
OF PHOSPHOR POWDERS AND SCREENS 385
L. E. Shea, R. J. Walko, and E. P. Royer, Sandia National Laboratories
FED PHOSPHORS: SYNTHESIS

BLUE LUMINESCENCE IN MIXED YTTRIUM AND GADOLINIUM NIOBATES CAUSED BY BISMUTH: THE ROLE OF THE ns² IONS
X. Jing, J. Silver, C. S. Gibbons, and A. Vecht, University of Greenwich, UK
C. S. Frampton, Roche Discovery, UK

OPTIMIZING ACTIVATOR AND CO-ACTIVATOR DOPANT CONCENTRATIONS FOR LOW-VOLTAGE YTTRIUM SILICATE PHOSPHORS
E. J. Bosze, G. A. Hirata, and J. M. McKittrick, University of California at San Diego
L. E. Shea, Sandia National Laboratories

SYNTHESIS AND PROPERTIES OF GREEN PHOSPHOR POWDER SrGa₂S₄:Eu

NANOCRYSTALLINE ZnS PHOSPHORS FOR FEDs

FED PHOSPHORS: THIN FILMS

DEPOSITION AND CHARACTERIZATION OF THIN-FILM CATHODOLUMINESCENT Y₂O₃:Eu
S. L. Jones, P. H. Holloway, W. J. Thomas, K.-G. Cho, D. Kumar, and R. Singh, University of Florida

THE EFFECTS OF GROWTH CONDITIONS ON THE LUMINESCENCE OF ZnO:Zn THIN-FILM PHOSPHOR GROWN BY MOCVD
B. S. Jeon and J. S. Yoo, Chung-Ang University, Korea
J. D. Lee, Seoul National University, Korea

THIN-FILM OXIDE PHOSPHORS WITH INCREASED CONDUCTIVITY FOR FEDs
V. Bondar, M. Vasyliv, Y. Vasyltiziv, M. Grytsiv, Y. Dubov, S. Popovich, L. Axelrud, V. Davydov, and I. Kucharsky, Lviv State University, Ukraine
LATE-NEWS PAPERS

EFFICIENT CATHODOLUMINESCENT NANO- AND MICROCRYSTALLINE PHOSPHORS FOR FEDs
E. T. Goldburt, V. A. Bolchouchine, B. N. Levonovitch, and N. P. Sochtine, RAM Phosphorix

ELECTRIC-FIELD EFFECTS ON LOW-ELECTRON-ENERGY CATHODOLUMINESCENCE FROM PHOSPHORS
C. H. Seager, Sandia National Laboratories

FED PHOSPHORS: DEGRADATION AND SCREENING

DEGRADATION OF COATED AND UNCOATED SULFIDE-BASED CATHODOLUMINESCENT PHOSPHORS
B. L. Abrams, T. A. Trottier, E. Lambers, C. Kondoleon, H. Swart, and P. H. Holloway, University of Florida

CHARACTERIZATION OF THE SURFACE OF DEGRADED CATHODOLUMINESCENT PHOSPHORS
E. Lambers, J. Thomes, B. Abrams, X.-M. Zhang, M. Puga-Lambers, C. Kondoleon, and P. H. Holloway, University of Florida

ELECTROPHORETIC DEPOSITION OF PHOSPHOR IN THERMO-REVERSIBLE GELS
Y. Choi and J. Talbot, University of California San Diego

SCREENING OF SPHERICAL RGB PHOSPHOR BY ELECTROPHORETIC DEPOSITION FOR FULL-COLOR FED APPLICATION
S. H. Kwon, S. H. Cho, and J. S. Yoo, Chung-Ang University, Korea
J. D. Lee, Seoul National University, Korea

NON-DESTRUCTIVE ANALYSIS OF PHOSPHOR WEIGHT AND DISTRIBUTION IN CRT SCREENS
J. J. Kingsley, Philips Display Components Co.
M. J. Starr, Philips Research Corp.