"Systems Engineering: A Necessary Science"

Proceedings of the
Seventh Annual
International Symposium
of the
International Council on
Systems Engineering
Volume I

sponsored by the INCOSE Los Angeles Chapter

Lisa M. Hritz
Ellen E. Barker, Editors

Printed courtesy of The Aerospace Corporation
TABLE OF CONTENTS

Please note that the number preceding paper title is an identification number to be used in conjunction with the symposium final program/abstract book.

SECTION I: SE APPLICATIONS

Commercial Applications of Systems Engineering
1.1 Barriers To Bringing System Engineering Into the Commercial Market Place
 E.V. LaBudde ... 3
1.2 Applying Systems Engineering To VLSI Design
 J.R. Gardner ... 9
1.3 Developing a System Solution In a Commercial Environment
 C.J. Gutierrez, J. McKennon, M. Eldridge, A. Bhadra 15
1.4 System Engineering Online Documentation
 C. Etcheverry, M. Eldridge, B. Bajema, T. Dytko 23

Automotive/Railway Transport Systems Engineering Applications
7.1 A Total Systems Approach To Automotive Development
 D. Hatley, G. Rushton .. 31
7.2 The Science of Railway Systems Engineering?
 J.S. Williams, J. Allan, J.Q. Jin .. 39
7.3 Overcoming Problems In the Development of an Automated Car Park System By Introducing Systems Engineering Methods
 F. Harzenetter, J. Beutler, H. Negele, E. Fricke 47
7.4 The Air Bag System: What Went Wrong With the Systems Engineering?
 D.M. Buede .. 55

Commercial Aviation/Space Systems Engineering Applications
12.1 Systems Engineering For Commercial Aircraft
 S. Jackson .. 63
12.2 A Framework For a Decision Support System (DSS) Architecture For Air Traffic Management
 A.N. Sinha, F.L. Willingham ... 71
12.3 Development of Laboratory Capabilities For the Integration of Global Positioning Satellite (GPS) System Onto the F-14 Aircraft
 H.K. Chan, R.K. Hugh, B.L. Krinsley ... 79
12.4 Application of a System Architecture Standard To a Federated Information System
 G.S. Percivall ... 85

Urban/Public Policy Systems Engineering Applications
23.1 Systems Engineering and the Architectural Design of Buildings
 D.G. Langston .. 93
23.2 An Interface Control Approach to Land-Use Management
 R.S. Carson ... 101
23.3 Systems Process for Public Policy Application
 W.H. Cutler ... 109

Environmental Applications
28.1 System Modeling and Possible Applications For the Social Sciences
 A. Koehler, S. Pelmulder, A. Stone ... 117
SECTION II: MEASUREMENT

Measuring and Improving Systems Engineering Capability
2.1 The Frameworks Quagmire, A Brief Look
S.A. Sheard ... 159
2.2 The Integrated Product Development CMM
A. Pyster, S.A. Sheard .. 167
2.3 Achieving More Scientific Systems Engineering Practices: PRC's Experience In Applying the SE CMM
R.R. Young, S. Mosier .. 175
2.4 Pilot Results Applying the System Security Engineering CMM
R. Hefner ... 183

Evaluating Systems and Performance With Metrics
17.1 Metrics and Teams: A Winning Combination
P.J. Brown ... 189
17.2 Continuous Measurable Improvement of Software Systems
R. Stewart, R.F. John ... 197
17.3 A Quantitative Metric of System Development Complexity
L.D. Thomas, R.A. Mog ... 205
17.4 What Do You Mean, You Can't Tell Me How Much of My Project Has Been Completed?
J. Kasser ... 213

SECTION III: SE PROCESSES & METHODS

System/Systems Engineering Definitions
3.1 Back To Basics Again—A Scientific Definition of Systems Engineering
B.W. Mar ... 229
3.2 No Matter What the Application, It Is Still Systems Engineering
A.T. Bahill, B. Gissing .. 237
3.3 Defining “System”—An Engineering Point of View
A.S. Paul ... 245
3.4 Implementation of the Systems Engineering Discipline
M.E. Bruno, B.W. Mar .. 253
Requirements Development

13.1 The Requirements Discovery Process
A.T. Bahill, F.F. Dean

13.2 Analysis of System Requirements Negotiation Behavior Patterns
A. Egyed, B. Boehm

13.3 A User-Centered System Development Model Based On Facilitator-Assisted Requirements Elicitation (FARE)
S.S.G. Gambhir, R.S. Scotti

13.4 Considerations In Developing Originating Requirements
D.M. Buede, S. Charbonneau

Systems Engineering Processes

18.1 The Vortex Principle: Systems Engineering With a Twist
R.W. Jorgensen

18.2 Development and Implementation of a Systems Engineering Process

18.3 Integrated Modeling For Launch System Architecture Optimization
R.A. Hickman

18.4 Optimization and Evaluation of Single-Staged Transportation Systems Example for the Solution of Highly Complex Technical Problems
M. Kesselmann

Process Improvements

19.1 An Information Architecture For Systems Engineering—Progress, Examples, and Directions
G. DeGregorio

19.2 Business Strategy Implementation With Systems Engineering
D.W. Oliver

19.3 A Business System Engineering Model Architecture
Y.D. Tronstad, J. Peterson

Life Cycle Standard/Systems and Software/Systems Vision

J.G. Lake

24.2 Resolved: Software Should Lead in Systems Engineering
J.R. Armstrong, A. Pyster

24.3 Engineering Harmony Between Systems and Software
S.J. Rose

24.4 A Systems Vision for INCOSE
R. Evans, S. Park

Systems Engineering Subprocesses

29.1 A Process For Requirements and Architecture Definition
J.N. Martin

29.2 An Architectural Model For System-Level Design
J.P. Calvez, J.K. Peckol

29.3 Integration Phases: All is Set at the Design Phases
D. Cattan

29.4 An Effective Approach To System Integration: A Comprehensive Checklist
S.A. Hyer

Best Paper – SE Processes & Methods Track

37.1 Redesign Cost Avoidance Using System Engineering
J. Helm, R.T. Cantrell

SECTION IV: EDUCATION & TRAINING

Academic Certificate and Degree Programs

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2</td>
<td>Graduate Course for Systems Engineering at the Fachhochschule München</td>
<td>G. Hettich</td>
<td>431</td>
</tr>
<tr>
<td>9.3</td>
<td>Graduate Systems Engineering Education at the Air Force Institute of Technology</td>
<td>S. Kramer, E. Pohl</td>
<td>437</td>
</tr>
<tr>
<td>9.4</td>
<td>Covert SE: Teaching SE In a Disciplinary Context</td>
<td>M. Maier</td>
<td>445</td>
</tr>
</tbody>
</table>

Industry Education and Training Programs

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.1</td>
<td>Internal Development of Systems Engineers</td>
<td>M.S. Kaufman</td>
<td>455</td>
</tr>
<tr>
<td>25.2</td>
<td>Important Skills and Knowledge To Include In Corporate Systems Engineering Training Programs</td>
<td>J.G. Watts, B.W. Mar</td>
<td>461</td>
</tr>
<tr>
<td>25.3</td>
<td>Systems Engineering Process Help Window</td>
<td>J.O. Grady</td>
<td>469</td>
</tr>
<tr>
<td>25.4</td>
<td>A Course On Systems Engineering For Railway Projects</td>
<td>J.Q. Jin, J. Allan, J.S. Williams</td>
<td>475</td>
</tr>
</tbody>
</table>

Best Paper – Education & Training

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.2</td>
<td>A Case Study For Teaching System Requirements Analysis</td>
<td>R.M. Gonzales, E. Johnson</td>
<td>483</td>
</tr>
</tbody>
</table>

SECTION V: SE MANAGEMENT

System Development Paradigms

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Thoughts About Life Cycle Phases: How a System Is Developed Incrementally</td>
<td>J.G. Lake</td>
<td>493</td>
</tr>
<tr>
<td>5.2</td>
<td>Yes Virginia, You Can Build a Defect Free System, On Schedule and Within Budget</td>
<td>J. Kasser</td>
<td>501</td>
</tr>
<tr>
<td>5.3</td>
<td>Product-Only WBS</td>
<td>J.O. Grady</td>
<td>509</td>
</tr>
<tr>
<td>5.4</td>
<td>Program Maturity and Red-Team Findings</td>
<td>D.E. Kaslow</td>
<td>517</td>
</tr>
</tbody>
</table>

Systems Engineering Roles and Responsibilities

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>Defining the Roles and Responsibilities of the Systems Engineering Organization/Team</td>
<td>J. Fisher</td>
<td>525</td>
</tr>
<tr>
<td>10.2</td>
<td>Development of a “Systems Engineering” Organization</td>
<td>W.N. Jackson</td>
<td>533</td>
</tr>
<tr>
<td>10.3</td>
<td>Transformation From a Functional To Process-Centered Systems Engineering Organization</td>
<td>D.D. Walden</td>
<td>539</td>
</tr>
<tr>
<td>10.4</td>
<td>Management of the Systems Engineering Discipline</td>
<td>M.E. Bruno, B.W. Mar</td>
<td>545</td>
</tr>
</tbody>
</table>

Leadership/Project Management

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1</td>
<td>The Leverage of Leadership</td>
<td>N.J. Ortberg</td>
<td>553</td>
</tr>
</tbody>
</table>
15.2 Systems Engineering and Management of Multinational Cooperative Development Programs
C.L. Roe .. 561

15.3 Visualizing System Engineering and Project Management As an Integrated Process
H. Mooz, K. Forsberg ... 569

15.4 A Simplified and Evolutionary Hypermediacy Model For Project Management
G. Worden .. 577

Risk/Change Management

21.1 Risk Management Implementation In a Product Team Environment
R. Elam, B. Kohrs .. 585

21.2 A Sixth Discipline For Future Awareness
E.M. Hall, T.E. Gorsuch 593

21.3 No Innovation Process Without Changes, But...
E. Fricke, B. Gebhard, H. Negele, E. Igenbergs 601

21.4 Applying Programmatic Risk Assessment To Nuclear Materials Stabilization R&D Planning
C.R. Kenley, S. Brown-Van Hoozer 609

Concurrent Engineering/Teaming

26.1 Concurrent Engineering and More—A Systematic Approach To Successful Product Development
S. Wenzel, T. Bauch, E. Fricke, H. Negele 617

26.2 A Spreadsheet Implementation of QFD and Systems Engineering Approaches To Support Concurrent Engineering
L. Doukas, G. Pollock, C. Jeyaratnam 625

26.3 Development and Integration of Engineering Processes at Oerlikon Aerospace
C.Y. Laporte, N.R. Papicco 633

26.4 Enhancing Teamwork With Cross-Product Teams (CPTs)
J.N. Martin .. 641

Teaming/IPPD

31.1 Mechanisms For Inter-Team Integration: Findings From Five Case Studies
T.R. Browning ... 649

31.2 A Collection of Integrated Product Development Lessons Learned
K. Cusick .. 657

31.3 An Approach To Successful Integrated Product and Process Development (IPPD)
J.A. Thornton, M.A. Luczak 663

31.4 System Integration and Test In Integrated Product and Process Development (IPPD): Engineering Out the Surprises
C.L. Roe ... 671

Best Paper – Management

36.2 Joint Development Teams in Action: Government and Industry Perspectives
L.S. Kollmorgen, W.S. Terry 679

SECTION VI: MODELING & TOOLS

Requirement Management Tools Lessons Learned

11.1 Implementing the Systems Engineering Process for Tool Selection
J. Christopher .. 689

11.2 What's Wrong With Requirements Management Tools?
C.L. James ... 697
11.3 Lessons Learned From Use of a Computer-Based Requirements Management Tool in the Project Configuration Control Board Environment
A. Meilich ... 705

11.4 Balancing Requirements and the Product—A Process and Tools Case Study
R.P. Scheurer, K.J. Kepchar ... 713

Systems Engineering Tool Applications

16.1 Spreadsheet Aided System Engineering and Optimization
T.R. Mincer, D.M. Hooper ... 721

16.2 How To Properly Specify and Control Essential Project Data
J. Chevalier, R.M. Marshall ... 729

16.3 Prophet™—The Engine For Integrated Risk Management
D.S. Huff ... 737

16.4 Driving Test and Verification From SLATE...A Method of Accelerating Product Development By Integrating Test With a Requirements Management Environment
M.E. Sampson ... 745

Modeling Tools

22.1 Lessons Learned Applying Model-Based System Engineering Methods to a Strategic Planning Activity
L. Baker, Jr .. 751

22.2 How Do You Model a System?
I. Plastow .. 757

22.3 A Framework For Research Into Model-Driven System Design
H. Lykins ... 765

22.4 ZOPH—A Systemic Approach To the Modeling of Product Development Systems
H. Negele, E. Fricke, E. Igenbergs 773

Simulation Tools

27.1 Modeling and Simulation Based System Integration Approach
P. Huang, P. Kar, A.E. Kennedy, H. Kato 781

27.2 The Simulation Based Acquisition Vision and the Role of an Integrated Engineering Tools Environment
N.E. Karangelen ... 791

27.3 Challenges In Designing Open Systems
P.A. Dargan, M.A. Hermes ... 799

27.4 Engineering of Intelligent, Complex Adaptive Systems Using an Agent-Based Architecture
J.R. Clymer ... 807

How To... On Modeling

32.1 Object Levels and Categories in O4S™ (Objects For Systems) for Engineering of Dependable Systems
I. Ögren ... 815

32.2 Systems Engineering Specification Techniques
B. Ghahramani .. 823

32.3 The Impact of Executable Requirements Models
M.S. Cohen ... 831

32.4 Continuous Electronic ENhancements Using Simulatable Specifications
L. Gearhart, M. Thullen, A. Winn 839

Best Paper - Modeling & Tools

38.2 Process Change In Systems Engineering: From Document-Driven To Model-Based Approach
L.W. Gordy Jr., D.R. Noel, R.P. Rhoads, C.M. Nichols, C.J. Gutierrez 847