SECTION 2 - MATERIALS FOR CORROSION RESISTANT HEAT EXCHANGERS AND FUEL RELATED PROBLEMS

2.1. Review Papers

MATERIALS REQUIREMENTS FOR ADVANCED COAL FIRED POWER GENERATION TECHNOLOGIES

Oakey J.E., Simms N.J.

COAL GASIFICATION FOR POWER GENERATION: MATERIALS STUDIES

Simms N.J., Bregani F., Huijbregts W.M.M., Kokmeijer E., Oakey J.E.

MATERIALS FOR WASTE INCINERATORS AND BIOMASS PLANTS


PRACTICAL EXPERIENCE IN THE DESIGN AND OPERATION OF AN INDIRECT FIRED GAS TURBINE PLANT USING AN ODS FERRITIC ALLOY HEATER

Starr F.

2.2. Corrosion Resistant Materials

CORROSION BEHAVIOUR OF SOME STEELS AND ALLOYS IN COAL GAS ENVIRONMENT

Cizner J., Pitter J., Kadlec J., Hakl J.

LABORATORY INVESTIGATION OF HIGH TEMPERATURE CORROSION IN STRAW-FIRED POWER PLANTS

Montgomery M.

INFLUENCE OF SULPHIDIZING-OXIDIZING ENVIRONMENT ON CREEP BEHAVIOUR OF SOME HIGH TEMPERATURE MATERIALS

Hakl J., Bina V., Cizner J., Vlasák T.

THE ROLE OF MATERIALS IN MAXIMIZING THE ENERGY UTILISATION FROM SOLID WASTE FUELS-RECENT DEVELOPMENTS IN MATERIALS OPTIMIZATION AND PROCESS DESIGN

Mayrhuber J., Cerjak H.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INCREASE OF WASTE INCINERATOR POTENTIAL BY ADVANCED SUPERHEATERS</td>
<td>II.751</td>
</tr>
<tr>
<td>Rademakers P.L.F., Wetzel R.W.A., Kokmeijer E.</td>
<td></td>
</tr>
<tr>
<td>CORROSION TESTING OF SUPERHEATER MATERIALS FOR USE IN WASTE AND BIOMASS FIRED COMBINED HEAT AND POWER PLANTS</td>
<td>II.761</td>
</tr>
<tr>
<td>PERFORMANCE OF AN IRON BASED ODS ALLOY IN A BOILER ENVIRONMENT</td>
<td>II.769</td>
</tr>
<tr>
<td>Holmström S., Sirén M., Heikinheimo L., Auerkari P., Varmavuo J., Saarinen R.</td>
<td></td>
</tr>
<tr>
<td>EVALUATION OF THE EROSION-CORROSION RESISTANCE OF COATED METALLIC MATERIALS FOR CFBC APPLICATIONS</td>
<td>II.779</td>
</tr>
<tr>
<td>Dutheillet Y., Prunier V.</td>
<td></td>
</tr>
<tr>
<td>CORROSION RESISTANT COATING MATERIALS FOR HEAT EXCHANGER TUBES IN WASTE INCINERATION PLANTS</td>
<td>II.789</td>
</tr>
<tr>
<td>Schroer C., Spiegel M., Grabke H.J.</td>
<td></td>
</tr>
<tr>
<td>CERAMIC HEAT EXCHANGE APPARATUS FOR HIGH-TEMPERATURE GAS TURBINES</td>
<td>II.799</td>
</tr>
<tr>
<td>Soudarev A.V., Grishaev V.V., Soudarev B.V.</td>
<td></td>
</tr>
<tr>
<td>BRAZING OF SiC USING THE BraSiC PROCESS FOR CHEMICAL AND THERMAL APPLICATIONS</td>
<td>II.809</td>
</tr>
<tr>
<td>Moret F., Sire P., Gasse A.</td>
<td></td>
</tr>
<tr>
<td>MECHANICAL PROPERTIES OF HIGH TEMPERATURE CORROSION SCALES ON MATERIALS FOR HIGH TEMPERATURE HEAT EXCHANGERS</td>
<td>II.819</td>
</tr>
<tr>
<td>Osgerby S., Saunders S.R.J., Banks J.P., Gohil D.D.</td>
<td></td>
</tr>
<tr>
<td>INFLUENCE OF PROCESSING ON THE MECHANICAL PROPERTIES OF MA956 ALLOY</td>
<td>II.827</td>
</tr>
<tr>
<td>Chao J., Cristina M.C., González-Carrasco J.L., González-Doncel G.</td>
<td></td>
</tr>
<tr>
<td>FAILURE MODES OF ALUMINA SCALES ON FeCrAl ALLOYS WITH REACTIVE ELEMENT ADDITIONS</td>
<td>II.835</td>
</tr>
<tr>
<td>Wilber J.P., Bennett M.J., Nicholls J.R.</td>
<td></td>
</tr>
</tbody>
</table>
SECTION 3 - MATERIALS FOR GAS TURBINES

3.1. Review Papers

NEW DEVELOPMENT IN LAND-BASED GAS TURBINE TECHNOLOGY
Schulenberg T.

THE CHARACTERISATION OF THE SINGLE CRYSTAL SUPERALLOY CMSX-4 FOR INDUSTRIAL GAS TURBINE BLADING APPLICATIONS
Bullough C.K., Toulios M., Oehl M. Lukáš P.

DEFORMATION MODELLING OF THE SINGLE CRYSTAL SUPERALLOY CMSX-4 FOR INDUSTRIAL GAS TURBINE APPLICATIONS
Toulios M., Mohrmann R., Fleury G.

THIRD GENERATION SUPERALLOYS FOR SINGLE CRYSTAL BLADES
Caron P., Khan T.

DISC MATERIALS FOR ADVANCED GAS TURBINES
Härkegård G., Guedou J.Y.

GAMMA TiAl INTERMETALLIC FOR GAS TURBINE APPLICATIONS
Nazmy M., Lupine V.

CONSIDERATIONS ON SOLIDIFICATION PATHS AND DEVELOPMENT OF NEW CASTABLE GAMMA TITANIUM ALUMINIDES
Naka S.

THE EXPLORATION OF PROTECTIVE COATINGS AND DEPOSITION PROCESSES FOR Ni BASE ALLOYS AND γ TiAl
Bettridge D.F., Wing R., Saunders S.R.J.

THERMAL BARRIER COATINGS FOR GAS TURBINES - FAILURE MECHANISMS AND LIFE PREDICTION
Singheiser L., Steinbrech R., Quadakkers W.J., Clemens D., Siebert B.

LIFETIME AND DEGRADATION PROCESSES OF TBCs FOR DIESEL ENGINES
Kvernes I., Lugscheider E., Ladru F.

3.2. Turbine Blade Materials

A COMPARATIVE INVESTIGATION ON THE THERMO-MECHANICAL FATIGUE BEHAVIOUR OF THREE Ni-BASE SUPERALLOYS
Engler-Pinto Jr. C.C., Rézaï-Aria F.
DEVELOPMENT AND CHARACTERISATION OF A HIGH STRENGTH SINGLE CRYSTAL SUPERALLOY – SMP 14
Gravill N., Benson J.M., Mc Colvin G., Maldini M.

IMPROVED PERFORMANCE CMSX-4 ALLOY TURBINE BLADES UTILISING PPM LEVELS OF LANTHANUM AND YTTRIUM

MODELLING OF THE MECHANICAL BEHAVIOUR OF THERMO-MECHANICALLY LOADED CMSX-4
Schubert F., Steinhaus T., Fleury G.

AN INVESTIGATION OF THE ANISOTROPY OF THE SECONDARY CREEP RATE IN CMSX-4
White P.S.

CREEP-FATIGUE BEHAVIOUR OF POLYCRYSTALINE AND SINGLE CRYSTAL Ni-BASE SUPERALLOYS IN738LC AND SC16
Chen W., Wahi R.P.

DESIGN OF A THIRD GENERATION DS SUPERALLOY TMD-13
Kobayashi T., Koizumi Y., Harada H., Yamagata T., Tamura A., Nitta S.

THIRD GENERATION SC SUPERALLOYS WITH EXCELLENT PROCESSABILITY AND PHASE STABILITY
Koizumi Y., Kobayashi T., Yokokawa T., Kimura T., Osawa M., Harada H.

DEVELOPMENT OF A NEW Ni-BASED SINGLE CRYSTAL SUPERALLOY FOR LARGE Sized BUCKETS
Tamaki H., Yoshinari A., Okayama A., Nakamura S., Kageyama K., Ohno T.

HIGH PERFORMANCE AND HIGH COMPLEXITY NET SHAPE PARTS FOR GAS TURBINES : THE ISOPREC POWDER METALLURGY PROCESS
Pellerin F., Guichard D., Raisson G., Moret F.

HIGH TEMPERATURE MEASUREMENT OF γ-γ' LATTICE MISFITS IN THIRD GENERATION Ni-BASE SUPERALLOY
Yokokawa T., Osawa M., Murakami H., Kobayashi T., Koizumi Y., Yamagata T., Harada H.

DESIGN OF A HIGH Re CONTAINING SINGLE CRYSTAL SUPERALLOY FOR INDUSTRIAL GAS TURBINES
Hino T., Yoshioka Y., Nagata K., Kashiwaya H., Kobayashi T., Koizumi Y., Harada H., Yamagata T.
3.3. Turbine Disc Materials

CREEP AND CREEP-FATIGUE BEHAVIOUR OF UDIMET 720 AT 850°C
Chateau E., Remy L., Dolet-Berge N., Fournier D.

FATIGUE CRACK GROWTH AND TENSILE DEFORMATION OF THE PM SUPERALLOY N18 : MICROSTRUCTURAL INVESTIGATIONS
Neves S., Penkalla H.J., Schubert F., Singheiser L.