ELECTRICAL AND ELECTRONIC DIVISION

M4—Polymer Applications in Electronic Devices

Tracking Resistance of Flame Retardant Glass Reinforced PBT
M. Tjahjadi, R. R. Gallucci, GE Plastics

Dielectric Cure Monitoring of UV-Curing Globe Top Materials for Chip-on-Board-Technology
S. Stampfer, G. W. Ehrenstein, Universität Erlangen-Nürnberg

On the Dynamics of Air-Trap in the Encapsulation Process of Microelectronics Package
R.-Y. Chang, W.-S. Yang, National Tsing-Hua University
E. Chen, C. Lin, General Instrument of Taiwan, Ltd.
C.-H. Hsu, CoreTech System Co., Ltd.

Fire Safety of E&E Equipment in the USA and Europe
J. H. Troitzsch, Protection Service

High Performance Liquid Crystalline Polymers for Electrical/Electronic Applications
G. M. Stack, R. A. Knowles, Eastman Chemical Company

M22—Polymer Applications in Electronic Devices

Creation of Electrically Conducting Plastics by Chaotic Mixing
R. I. Danescu, D. A. Zumbrunnen, Clemson University

Conducting Polymers in Ultracapacitor Applications
M. Aldissi, B. Schmitz, E. Lazaro, M. Bhamidipati, B. Dixon, Cape Cod Research

Neocapacitor—New Tantalum Capacitor with Conducting Polymer
A. Kobayashi, Y. Saiki, NEC Corporation
K. Watanabe, NEC Toyama Ltd.

Integrated Design Module for Wire Sweep in IC-Chip Encapsulation
W.-R. Jong, Y.-L. Chen, Chung-Yuan Christian University

Three-Dimensional Simulation of Plastic Molding Processes: Application to Microchip Encapsulation
R. Han, M. Gupta, Michigan Technological University

Finite Element Analysis Aided Engineering of Elastomeric EMI Shielding Gaskets
S. H. Peng, K. Zhang, Parker Hannifin Corporation

ESD Thermoplastic Product Offers Advantages for Demanding Electronic Applications
D. W. Ferguson, E. W. S. Bryant, H. C. Fowler, Hyperion Catalysis International, Inc.

T5—Polymeric Corrosion Protection of Metals

Effect of Polyaniline Colloids on the Corrosion of Mild Steel
P. C. Innis, G. Spinks, G. G. Wallace, University of Wollongong

Conducting Polymer Coatings on Steel: Adhesion and Corrosion Protection
A. Dominis, G. M. Spinks, G. G. Wallace, University of Wollongong

Studies of Electronically Conducting Polymers for Corrosion Inhibition of Aluminum and Steel
D. E. Tallman, Y. Pae, G. Chen, G. P. Bierwagen, B. Reems, V. J. Gelling, North Dakota State University

The Iron/Polyaniline Interface and Its Effect on Corrosion Protection of Iron and Cold Rolled Steel in Aqueous and Salt Environments
M. Fahlman, H. Guan, J. A. O. Smallfield, A. J. Epstein, The Ohio State University

Scientific Engineering of Anti-Corrosion Coating Systems Based on Organic Metals (Polyaniline)
B. Wessling, Ormecon Chemie

T23—Polymer Structure and Characterization

Electrical Conductivity in Conjugated Polymers
A. J. Epstein, The Ohio State University

Mechanical Properties of Thin Polyaniline Films
C. Feger, B. K. Furman, T. O. Graham, IBM T. J. Watson Research Center

Structure-Property Characterization of Regiochemically Defined Conducting Poly(3-undecyl thiophene)s
B. Wessling, Ormecon Chemie
S. Narayan, P. Desai, A. S. Abhiraman, J. Kowalik, L. Tolbert, Georgia Institute of Technology
Conductivity and Thermopower of Doped Polyaniine As-Spun Fibers from Leucoemeraldine Base (991) .. 1262
K. Eiaprersatsak, R. V. Gregory, G. X. Tessema, Clemson University
Conductive Polymer Films for Improved Poling in Non-Linear Optical Waveguides (946) .. 1265
J. P. Drummond, S. J. Clarson, University of Cincinnati
S. J. Caracci, J. S. Zetts, Wright Patterson Air Force Base
Ion-Selective Conduction in Mica-Poly(vinyl chloride) Membrane (67) .. 1269
A. Ghanam, M. Ahmed, A. Zihlif, The University of Jordan
The Corrosion Protection of Metals by Conductive Polymers II. Pitting Corrosion (966) .. 1276
W.-K. Lu, R. L. Elsenbaumer, The University of Texas at Arlington

W5—Conducting Polymers

Hydrodynamic Electroprocessing of Lactoferrin-Containing Conducting Polymer Colloids (106) .. 1282
G. G. Wallace, V. Aboutanos, J. N. Barisci, G. R. Harper, University of Wollongong
Solid-State NMR Characterization of the Amorphous Region of Polyaniline (774) .. 1286
M. P. Espe, University of Akron
J. S. Schaefer, Washington University
B. R. Mattes, Los Alamos National Laboratory
Theoretical Investigation of the Singlet and Triplet Excitations in Cyano-Substituted Oligo(phenylene vinylene) (428) .. 1291
D. Beljonne, D. A. dos Santos, J. Cornil, J. L. Brédas, Université de Mons-Hainaut
Conformation of Novel Chiral Polyanilines—Influence of Synthesis Mode (141) .. 1296
L. A. P. Kane-Maguire, V. Aboutanos, I. D. Norris, G. G. Wallace, University of Wollongong
Polyaniline Membranes for Liquid Separations (290) .. 1301
I. J. Ball, S.-C. Huang, R. B. Kaner, University of California

W26—Conducting Polymers

Development of Electrohydrodynamic Flow Cells for the Synthesis of Conducting Polymers (162) .. 1308
P. C. Innis, V. Aboutanos, N. Barisci, S. Moulton, G. G. Wallace, University of Wollongong
Thermally Stable Conducting Polymer Composites for Melt Processing (286) .. 1313
S. Dahman, RTP Company
J. Avlyanov, Eeonyx Corporation
Synthesis & Processing of Regiochemically Defined Conducting Poly(3-undecyl bithiophene) (535) .. 1317
S. Narayan, P. Desai, A. S. Abhiraman, J. Kowalik, L. Tolbert, Georgia Institute of Technology
New Organic and Polymeric Materials for Thin Film Optical Devices (925) .. 1321
B. S. Chuah, X.-C. Li, F. Cacialli, J. E. Davies, N. Feeder, R. H. Friend, A. B. Holmes,
S. C. Moratti, H. Sirringhaus, University of Cambridge
F. Garnier, Laboratoire des Matériaux Moléculaires CNRS
Surface Modification of Polyaniline Films with 4-Alkyl- and 4-Perfluoroalkylanilines (755) .. 1325
T. W. Hanks, M. Powell, L. L. Wright, Furman University
R. V. Gregory, Clemson University
A. G. MacDiarmid, W. J. Zhang, J. Feng, F. Huang, University of Pennsylvania
B. R. Hsieh, Xerox Corporation
Conductive Polymer-Based Transducers as Vapor-Phase Detectors (514) .. 1335
F. G. Yamagishi, T. B. Stanford, C. I. van Ast, P. O. Braatz, L. J. Miller,
Hughes Research Laboratories
H. C. Gilbert, Hughes Aircraft Company
Electron Excitation Energy Dissipation in Conductive Polyaniline Films (995) .. 1340
G. P. Karpacheva, A. V. Orlov, S. V. Rykov, A. V. Topchiev Institute of Petrochemical Synthesis RAS
E. D. Skakovsky, Institute of Physiko-Organic Chemistry AS Belarus

H5—Conducting Polymers

Fabrication and Characterization of Conductive Polyaniline Fiber (994) .. 1346
Characterization of Anisotropic Polyaniline Films (923)

R. Ou, T. Liu, R. Samuels, *Georgia Institute of Technology*

H. Wang, B. Mattes, *Los Alamos National Laboratory*

S. Hardaker, L. Ding, R. Gregory, *Clemson University*

Hydroxyethyl Substituted Polyanilines: Chemistry and Applications as Resists (835)

M. A. Z. Hupcey, M. Angelopoulos, J. D. Gelorme, *IBM T. J. Watson Research Center*

C. K. Ober, *Cornell University*

Hydroxyethyl Substituted Polyanilines: Chemistry and Applications as Resists (835)

I. D. Norris, L. A. P. Kane-Maguire, G. G. Wallace, *University of Wollongong*

Oxidation State Effects in Polyaniline (990)

S. S. Hardaker, X. W. Wang, R. V. Gregory, *Clemson University*

Development of Conductive Elastomer Foams by *in situ* Copolymerization of Pyrrole and N-Methylpyrrole (243)

R. A. Weiss, Y. Fu, *University of Connecticut*

P. P. Gan, M. D. Bessette, *Rogers Corporation*

Novel Electrically Conductive Injection Moldable Thermoplastic Composites for ESD Applications (926)

M. Narkis, *Technion-Institute of Technology*

Polymer Composite Varistor Materials (893)

L. Rector, *Littlefuse, Inc.*

H. Hyatt, *Hyger Physics, Inc.*

Quantifying Polymer Adhesive Interfacial Performance in Electronic Packages (480)

M. V. Brillhart, *Hewlett Packard Company*

X. Dai, P. S. Ho, *University of Texas*

Electrochemical Formation of a Composite Polymer–Aluminum Oxide Film (453)

J. M. Runge-Marchese, *The C. J. Saporito Plating Company*

M. J. McNallan, *University of Illinois at Chicago*

Study of the Chemorheology of a Highly-Filled Epoxy Molding Compound (436)

R.-Y. Chang, Y. Lin, F.-S. Lin, W.-S. Yang, *National Tsing-Hua University*

C.-H. Hsu, *CoreTech System Co., Ltd.*

ENGINEERING PROPERTIES AND STRUCTURE DIVISION

M6—Supercritical Fluids Processing and Applications

Polymer Processing with Supercritical Fluids: Partitioning of Solutes and Cosolvents between Supercritical Fluids and Polymer (678)

C. A. Eckert, S. Kazarian, B. West, N. Brantley, *Georgia Institute of Technology*

Viscosity Reduction of Polymers by the Addition of Supercritical Carbon Dioxide in Polymer Processing (528)

M. D. Elkovitch, L. J. Lee, D. L. Tomasko, *The Ohio State University*

Effect of Supercritical CO$_2$ on the Polymorphism in Syndiotactic Polystyrene (806)

P. Handa, Z. Zhang, B. Wong, *Institute for Chemical Process and Environmental Technology*

In situ Spectroscopy of CO$_2$-Induced Plasticization of Glassy Polymers (782)

S. G. Kazarian, N. H. Brantley, C. A. Eckert, *Georgia Institute of Technology*

Supercritical Fluids as Polymer Processing Aids (735)

V. Khan, C. Kwag, C. W. Manke, E. Gulari, *Wayne State University*

M7—Structure and Processing Relationships in Polypropylene and Its Copolymer Blends

The Influence of Extrusion Parameters on the Morphology and Mechanical Properties of Polypropylene Sheet (28)

E. Harkin-Jones, W. R. Murphy, *The Queen's University of Belfast*

N. Macauley, *Smith & Nephew Group Research Centre*

Chemical Coupling of Polypropylene Systems Containing Non-Glass Fillers (264)

ANTEC '98
Microstructure and Dynamic Fracture Toughness of Polypropylene Reinforced with Cellulose Fiber (660)
C. M. Clemons, D. F. Caulfield, USDA Forest Service
A. J. Giacomin, University of Wisconsin
Dynamic Fracture of Short Fiber Reinforced Polypropylene (725)
S. E. Barbosa, PLAPIQUI (UNS-CONICET)
J. M. Kenny, University of Perugia
The Static and Dynamic Behavior of PP/EPDM- and PP/POE-Blends Using the Hysteresis Measurement Method (109)
F. Raue, G. W. Ehrenstein, University of Erlangen-Nuremberg

M8—Toughened Thermosets

*Evaluation of Yield Criteria and Energy Absorbing Mechanisms of Rubber Modified Epoxies in Multiaxial Stress States (985)
R. S. Kody, A. J. Lesser, University of Massachusetts
*Micromechanical Modelling of Particle-Crack Tip Interaction in Rubber-Toughened Epoxies (78)
X.-H. Chen, Y.-W. Mai, University of Sydney
*Morphology and Fracture Mechanisms in Thermoplastics-Modified BMI Resin (540)
G. Wei, J. Miranda, H.-J. Sue, Texas A&M University
B. Burton, D. White, Dow-United Technology Joint Venture
*Damage Tolerance of Composite Laminates Subjected to Ballistic Impact (820)
A. M. Monib, J. W. Gillespie, Jr., University of Delaware
B. K. Fink, Army Research Laboratory
*Toughening Mechanisms in Boron Nitride/Rubber Hybrid Composites (587)
M. F. DiBerardino, R. A. Pearson, Lehigh University

M12—Application and Interpretation of DSC—Physical and Chemical Aging

*Miscible Blends of Atactic Polystyrene and Poly(2,6-dimethyl-1,4-phenylene oxide): Part 1. Non-Equilibrium Glassy Behavior Probed by Calorimetry and Dilatometry (970)
C. G. Robertson, G. L. Wilkes, Virginia Polytechnic Institute and State University
*Miscible Blends of Atactic Polystyrene and Poly(2,6-dimethyl-1,4-phenylene oxide): Part 2. Application of Cooperativity Theory to Glassy State Relaxations (803)
C. G. Robertson, G. L. Wilkes, Virginia Polytechnic Institute and State University
*Flow, Pressure, Temperature Dependence of Oxidative Induction Time Measurements on a Heat Flow DSC (742)
L. Woo, Y. S. Ding, M. T. K. Ling, C. Qin, A. Khare, Baxter Healthcare Corporation
*Glass Transition and Melting Behavior of Poly(ethylene terephthalate)/Poly(ethylene 2,6-naphthalate) Blends (226)
Y. Shi, S. A. Jabarin, The University of Toledo

M32—Toughened Thermoplastics

*Nylon Toughened with Functionalized EPDM Rubber: Morphology and Properties (244)
B. Litke, R. A. Weiss, University of Connecticut
C. L. Beatty, University of Florida
*Fracture Resistance and Microstructures of Unreinforced and Fiber-Reinforced PA6.6/PP/SEBS-g-MA (77)
S.-C. Wong, Y.-W. Mai, The University of Sydney
*Tear Strength Enhancement Mechanisms in TPO Films (125)
N. Dioh, Millennium Petrochemicals Inc.
*Impact Fracture Mechanisms in Thermoplastic Polyolefin Blends (541)
J. Lu, C. K.-Y. Li, G. Wei, H.-J. Sue, Texas A&M University
K. Sehanobish, Dow Chemical USA
*Morphological Study of Fatigue Induced Damage in Semi-Crystalline Polymers (846)
N. A. Jones, A. J. Lesser, University of Massachusetts
*Rubber Toughening of Poly(methyl methacrylate) via High-Energy Mechanical Attrition (558)
A. P. Smith, H. Ade, R. J. Spontak, C. C. Koch, North Carolina State University

*Present in a joint session.
*Model of Heterophase Polymer Formation from Reacting Blends at Phase Decomposition Induced by Thermosets Cure (561). .. 3136
G. M. Sigalov, B. A. Rozenberg, Russian Academy of Sciences

M24—Polymer Structure and Morphology by Microscopy Methods

*Morphological Characterization of Mechanically Alloyed PET/Vectra Blends by X-Ray Microscopy (557) 1474
A. P. Smith, C. Bai, H. Ade, R. J. Spontak, C. M. Balik, C. C. Koch, North Carolina State University
H. Ade, C. K. Saw, Hoechst-Celanese Corporation

*Electron Microscopy Studies of Microstructured Polymer-Solvent Systems (559) 1479
J. H. Laurer, R. J. Spontak, North Carolina State University

*Morphology of Reactive Polypropylene-Polyetheramine Blends (448) .. 1484
B. J. Foran, D. C. Martin, The University of Michigan
C. Henkee, R. J. Clark, Huntsman Corporation

*Morphology Evolution and Properties of Physically and Reactor Compatibilized Polypropylene-Polystyrene Blends (681) .. 1489
A. A. Adewole, M. D. Wolkowicz, Montell Polylefins
L. Mascia, Loughborough University
C. G. Gogos, Stevens Institute of Technology

*Crystallization Morphology and Crystallization Kinetics of a Liquid Crystalline Polyimide (117) 1494
T. S. Chung, S. L. Liu, National University of Singapore
H. Oikawa, A. Yamaguchi, Mitsui Toatsu Chemicals, Inc.

A Quantitative Description of the Effects of Molecular Weight and Atactic Level on the Spherulite Growth Rate of Ziegler-Natta Isotactic Polypropylene (354) 1499
J. C. Michel, Fina Research

T6—Metallocene Polymers—New Developments

*Spherulite Boundary Strengthening: A New Concept in Polymer Blends (269) ... 1506
A. Lustiger, C. N. Marzinsky, R. R. Mueller, Exxon Research and Engineering

*Properties of Syndiotactic Polypropylene Fibers Produced from Melt Spinning (726) 1511
M. Gownder, Fina Oil and Chemical Company

The Influence of Sequence Length Distribution on the Linear Crystal Growth of Ethylene-Octene Copolymers (488) ... 1516
J. E. Wagner, S. Abu-Iqyas, K. Monar, P. J. Phillips, University of Tennessee

*Effect of Polyethylene Blend on Heat Sealing Properties (261) ... 1521

*Viscosity of Poly(ethylene-α-olefins) and Their Crosslink (283) ... 1526
H.-Y. Tsai, G.-Y. Chang, S.-C. Wu, Union Chemical Laboratories, ITRI

T9—Application and Interpretation of DSC and TMDSC

*Application of the Advanced Thermal Analysis System (ATHAS) to Differential Scanning Calorimetry (DSC) and Temperature-Modulated DSC of Polymers (127) 2032
B. Wunderlich, M. Pyda, University of Tennessee; Oak Ridge National Laboratory

*Modulated Differential Scanning Calorimetry to Study Reacting Polymer Systems (363) 2037
B. Van Mele, G. Van Assche, A. Van Hemelrijck, Vrije Universiteit Brussel

S. L. Simon, University of Pittsburgh
G. B. McKenna, National Institute of Standards and Technology

T24—New Engineering Thermoplastics: PEN, SPS, Polyketones, Polyamides

Development of a Novel Reaction Injection Moulding Process for Syndiotactic Polystyrene (197) 1532
C. L. P. Shan, W. E. Baker, M. F. Cunningham, M. C. Baird, Queen's University

Structure-Property Characteristics of Ion Implanted Syndiotactic Polystyrene (387) 1537
C.-M. Hsiung, C. Han, Y. Q. Wang, W. J. Sheu, G. A. Glass, University of SW Louisiana

*Present in a joint session.
D. Bank, *The Dow Chemical Company*
Uniaxial Drawing Behavior of Syndiotactic Polystyrene (663) .. 1542
R. J. Yan, D. M. Shinozaki, W. Wang, *The University of Western Ontario*
Development of Structure-Property Relationships for Thermoplastic Matrix-Carbon Fiber Composites with a Tailored Polyimide Interphase (394) .. 1546
S. H. Gardner, R. M. Davis, K. L. Reifsnyder, *Virginia Polytechnic Institute and State University*
The Influence of Transamidation on the Crystallization and Morphology of Crystalline-Amorphous Polyamide Blends (712). ... 1551
D. S. Kalika, T. B. Jordan, *University of Kentucky*
Stress Relaxation in Semi-Crystalline PEN Films: Physical Aging Effects (907) 1554
J. R. Gillmor, J. Greener, *Eastman Kodak Company*
The Effects of Transesterification on the Properties of Poly(ethylene 2,6-naphthalene dicarboxylate)/Poly(ethylene terephthalate) Blend Films (751) .. 1561
W. Kim, H.-J. Kang, *Dankook University*

T30—Small Angle Scattering for the Industrial Plastics Laboratory

*Small-Angle Scattering for the Industrial Plastics Laboratory—An Overview (649) 2048
J. D. Barnes, *National Institute of Standards and Technology*

*Synchrotron X-Ray Scattering Applications in Crystallization and Deformation of Polymers (579) ... 2052
F. Yeh, B. S. Hsiao, B. Chu, SUNY at Stony Brook

*The Use of Sans for the Miscibility of Polyolefins: Measurement and Application (802) 2056
D. J. Lohe, Exxon Research & Engineering Co.

*Acceleration of Spherulite Growth Rates of Nylon 6,6 by Comonomer Addition (485) 2060
S. Schreiber, P. J. Phillips, *University of Tennessee*

*Small Angle Scattering Studies of Dendrimer Blends and Interpenetrating Polymer Networks (810) ... 2065
B. J. Bauer, A. Topp, T. J. Prosa, D.-W. Liu, C. L. Jackson, E. J. Amis, National Institute of Standards and Technology

*Use of Synchrotron Radiation in Plastics Analysis (724) .. 2070
M. Rabeony, H. Shao, K. S. Liang, Exxon Research and Engineering
E. Siakali-Kioulafa, N. Hadjichristidis, *University of Athens*

T39—Engineering Properties and Structure

*Comparison of Reactive Extrusion Processes for Functionalization of Polypropylene (2066). 3398
C. Bohn, Jr., *University of Southern Mississippi*

*The Effect of Sulfonation and Counterion Type on the Thermal Transitions of Sulfonated Poly(ethylene terephthalate) (2065) ... 3402
M. A. McSween, *University of Southern Mississippi*

C. N. Guimond, *University of Massachusetts, Lowell*

*Volume and Enthalpy Recovery of Polystyrene (2069) ... 3411
E. M. Wolf, S. L. Simon, D. J. Plazek, *University of Pittsburgh*

*The Viability of Using Fly Ash as a Polymer Filler (2016) ... 3415
A. Chamberlain, B. Hamm, Pennsylvania College of Technology

*Evaluation of Recycled High-Pressure Laminate Reinforcement Fibers in a Polypropylene Matrix (2017) ... 3418
P. A. Berenbrok, Pennsylvania College of Technology

G. A. Fortney, Jr., Pennsylvania College of Technology

W6—Physical Properties of Liquid Crystalline Polymers

Melt Rheology of an All-Aromatic Liquid Crystalline Polymer (548) 1566

*Present in a joint session.
W7—Structure, Property and Processing of Films and Coatings

Measurements of Absolute Birefringence of Biaxially Oriented Films and Sheets
On-Line or Off-Line (728) ... 1588
A. Ajji, J. Guéremont, R. G. Matthews, M. M. Dumoulin, Industrial Materials Institute

The Influence of Multidimensional State of Stress on the Mechanical Properties of Thermoplastics (254) .. 1593
M. Wanders, E. Schmachtenberg, University of Essen
On-Line Birefringence Measurements in Production of Biaxially Oriented Polymers (427) .. 1598
A. S. Redner, Strainoptic Technologies, Inc.

Residual Stress Development in Marine Coatings under Simulated Service Conditions (40) .. 1602
G. Yan, J. R. White, University of Newcastle upon Tyne
A Characteristic Surfactant Diffusion Time for High Speed Coating Processes (279) .. 1607
J. R. Campanelli, X. Wang, Concordia University

W27—Structure, Property, and Processing Relationships in PET and Other Polyesters

Roll and Tensile Drawing of PET: Effect of Process Conditions on Structure and Properties (727) .. 1614

Oxygen Barrier Property Enhancement of PET through Physical Modification (462) .. 1619
D. J. Sekelik, S. Nazarenko, E. V. Stepanov, A. Hiltner, E. Baer, Case Western Reserve University
D. A. Schiraldi, Trevira Company

Microstructure of Amorphous and Crystalline Poly(ethylene terephthalate) (230) .. 1624
W. Chen, E. A. Lofgren, S. A. Jabarin, The University of Toledo
Orientation and Structure Development of Highly Crystalline and Clear Poly(ethylene terephthalate) (229) .. 1629
S. Venkataraman, E. A. Lofgren, S. A. Jabarin, The University of Toledo

Nanocomposites of PET and PET/HBA Based LCP (570) .. 1637
C. H. Song, A. I. Isayev, The University of Akron
Effect of Morphology on Barrier Properties of Poly(ethylene terephthalate) (227) .. 1642
A. Natu, E. A. Lofgren, W. Kollen, S. A. Jabarin, The University of Toledo

Chain Extension of Poly(butylene terephthalate) by Reactive Extrusion (151) .. 1653
B. Guo, C.-M. Chan, The Hong Kong University of Science and Technology

H6—General Topics: Testing and Evaluation of Polymer Properties I

Cure, Shrinkage and Properties of an Epoxy Material (750) .. 1658
O. Sindt, S. L. Simon, University of Pittsburgh
G. B. McKenna, National Institute of Standards and Technology
E. Liang, GE Corporate R&D
Relation of the Cure-Dependent Directional and Volumetric Expansivity of 8552/S2 Epoxy + Glass Fiber Laminates to the Glass Transition (753) .. 1663
A. S. de Vilchez, B. Bilyeu, W. Brostow, University of North Texas
P. Butzloff, Bell Helicopter Textron, Inc.
R. Berggren, V. von Malmborg, Royal Institute of Technology
Craze Growth in Stress Relaxation Conditions: Effects of Physical Aging (252) .. 1668
M. Delin, G. B. McKenna, National Institute of Standards and Technology
In-Line Fiber-Optic Raman Spectroscopy: Simultaneous Monitoring of Composition and Rheological Properties in Poly(ethylene vinyl acetate) Copolymers (96). .. 1672
B. J. Deshpande, M. S. Dhamdhere, J. Li, M. G. Hansen, University of Tennessee

Moisture in Nylon—Selected Topics (563) .. 1676
M. I. Kohan, MIK Associates

H7—General Topics: Novel Polymeric Materials

Melt Processable Semicrystalline Polyimide Structural Adhesive Based on 1,3-Bis(4-aminophenoxy) Benzene and 3,3’,4,4’-Biphenyltetracarboxylic Dianhydride (455). 1682
V. Ratta, E. J. Stancik, A. Ayambem, H. Parvatareddy, J. E. McGrath, G. L. Wilkes, Virginia Polytechnic Institute and State University

Reactive Extrusion of Styrene-Maleic Anhydride Copolymer and Polyol Blends (466) 1687
G. Bayram, Middle East Technical University
U. Yilmazer, Middle East Technical University; NJ Institute of Technology
M. Xanthos, NJ Institute of Technology; Polymer Processing Institute

Photoresponsive Polyurethane-Acrylate Copolymers (335) 1691
E. A. Gonzalez de los Santos, M. J. Lozano-Gonzalez, Centro de Investigacion en Quimica Aplicada
A. F. Johnson, University of Leeds

A Volumetric Expanding Study on Anhydride Curing Epoxy System (425) 1696
J.-R. Lee, S.-J. Park, S.-G. Lee, Korea Research Institute of Chemical Technology

H18—General Topics: Testing and Evaluation of Polymer Properties II

Damping Behavior of Polyurethane-Based AB Crosslinked Polymers (237) 1702
R.-S. Shih, C.-H. Wu, J.-C. Hung, H.-F. Tang, Union Chemical Laboratories

Compatibility Analysis of Tensile Properties of Polyamide Using ASTM and ISO Testing Procedures (718) 1706

Modelling the Retentive Memory Effect in Mineral Filled LDPE (901). 1713
S. (X. Q.) Xu, D. Watt, M. Karl, N. Zamani, T. D’Andrea, M. Renert, University of Windsor

Modeling of Structure-Property Relationships in Polymers with Intermediate Order (950) 1716
J. Van Order, P. J. Ludovice, Georgia Institute of Technology

Microscopic Mechanical Modeling of Polymer Modified Asphalt Composite (927) 1720
G. Li, Y. Zhao, S.-S. Pang, Louisiana State University

Estimation of Time-Temperature-Collectives at Describing Ageing of Polymer Materials (294) 1728
D. Blaese, E. Schmachtenberg, University of Essen

H19—General Topics: Novel Polymer Processing

New Concepts for Homogeneous Coating of Large Substrates by Microwave-Assisted Plasma Polymerization (214) 1734
I. Fonteiner, W. Michaeli, M. Stollenwerk, Institute for Plastic Processing (IKV)

Effect of Melt Impregnation Process Parameters on the Mechanical Properties of Compression and Injection Molded Test Specimens (586) 1739
P. J. Bates, Royal Military College of Canada
J. M. Charrier, McGill University

Maleation of EPDM through Reactive Extrusion (156) 1744
M. R. Thompson, C. Tzogakanis, G. L. Rempel, University of Waterloo

An Experimental Study on the Residual Stresses and Birefringence Structure in Constrained Quenched Plastic Parts (424) 1749
K. Yoon, Dankook University

Experimental Study of Optical Disc Birefringence (417) 1753
J. W. Shin, D. C. Rhee, LG Corporate Institute of Technology
S. J. Park, LG Production Engineering Research Center

Numerical Analysis of Injection/Compression Molding Process for Center-Gated Disc (418) 1756
S. J. Park, J. H. Han, W. G. Ryim, S. K. Chang, LG-PRC
J. H. Kim, T. G. Kang, B. S. Heo, LG-MTC
T. H. Kwon, POSTECH
THERMOPLASTIC MATERIALS AND FOAMS DIVISION

M10—Advances in Engineering Plastics

Progressive Microstructure Development by Chaotic Mixing of Liquid Crystalline Polymers and Thermoplastics and Corresponding Tensile Strengths (23) .. 1762
Y. H. Liu, D. A. Zumbrunnen, Clemson University

Simulation of the “Intrusion” Process for Thick-Walled Thermoplastics—Product and Process Characteristics (135) .. 1767
K. A. Nath, Z. Li, New Jersey Institute of Technology
M. Xanthos, S. K. Dey, U. Yilmazer, Y. Li, New Jersey Institute of Technology; Polymer Processing Institute

Molecular Characteristics of Self-Reinforced Thermoplastic Polyphenylenes (220) .. 1772
F. Motamedi, M. Isomaki, M. S. Trimmer, Maxdem Inc.
R. Vaia, Wright-Patterson AFB

Processability and Properties of Biodegradable Plastics Made from Agricultural Biopolymers (306) .. 1777
J. U. Otaigbe, Iowa State University

Internal Anti-Static Agents for Engineering Plastics (996) .. 1782
J. Ward, R. Simmons, P. Chatham, Witco Technical Service Center

M26—Metalloocene Based Polymers—New Developments

An Outlook for Metallocone and Single Site Catalyst Technology into the 21st Century (748) .. 1790
K. W. Swogger, Dow Plastics

Developing the Broad Technology Scope and Value for Ethylene/Styrene Interpolymers: A Scientist/Manager Partnership (491) .. 1795
S. Ellebracht, S. Chum, Dow Plastics

Technology of Blending Ethylene/Styrene Interpolymers (456) .. 1798
Y. W. Cheung, M. J. Guest, P. S. Chum, The Dow Chemical Company

Comparison of Ethylene-Styrene Interpolymers and Ethylene-Octene Copolymers (449) .. 1803
A. Chang, E. V. Stepanov, A. Hiltner, E. Baer, Case Western Reserve University
M. Guest, S. Chum, The Dow Chemical Company

Classification of Ethylene-Styrene Interpolymers Based on Comonomer Content (450) .. 1808
H. Chen, A. Hiltner, E. Baer, Case Western Reserve University
M. J. Guest, S. P. Chum, The Dow Chemical Company

Polyolefins Containing “Reactive” p-Methylstyrene Groups: From High Tm Thermoplastics to Low Tg Elastomers (799) .. 1813
T. C. Chung, The Pennsylvania State University

Easy Processing Metallocone Polyethylene (154) .. 1816
C.-T. Lue, Univation Technologies

T6—Metallocone Polymers—New Developments

*Spherulite Boundary Strengthening: A New Concept in Polymer Blends (269) .. 1506
A. Lustiger, C. N. Marzinsky, R. R. Mueller, Exxon Research and Engineering

*Properties of Syndiotactic Polypropylene Fibers Produced from Melt Spinning (726) .. 1511
M. Gownder, Fina Oil and Chemical Company

*The Influence of Sequence Length Distribution on the Linear Crystal Growth of Ethylene-Octene Copolymers (488) .. 1516
J. E. Wagner, S. Abu-Iqyas, K. Monar, P. J. Phillips, University of Tennessee

*Effect of Polyethylene Blend on Heat Sealing Properties (261) .. 1521

*Viscosity of Poly(ethylene-α-olefins) and Their Crosslink (283) .. 1526
H.-Y. Tsai, G.-Y. Chang, S.-C. Wu, Union Chemical Laboratories, ITRI

T27—Polymer Foams—Materials and Processes

Rotational Molding of Low-Density LLDPE Foams (620) .. 1822

*Present in a joint session.
G. Liu, C. B. Park, University of Toronto
J. A. Lefas, WedTech Inc.
Structure/Process/Property Relationships in Molded Polyethylene Foams (323) 1832
G. L. A. Sims, A. Mahapatro, UMIST
Measuring the Rate of Gas Formation during the Cure Process of a Metallocene Foam (662) 1837
A. Yacykewych, C. W. Brabender Instruments, Inc.
Product and Process Developments in the Nitrogen Autoclave Process for Polyolefin Foam Manufacture (850) 1842
D. E. Eaves, N. Witten, Zotefoams plc
Influence of Diethanol Amine (DEOA) on Structure-Property Relationships in Molded Flexible Polyurethane Foams (705) 1850
B. D. Kaushiva, G. L. Wilkes, Virginia Polytechnic Institute and State University
Study of Porous Artificial Wood Based on Foamable Composites of LDPE and Wood Flour (54) 1855
J. Paladugula, F. Shutov, Tennessee Technological University
A Quantitative Analysis of Chemical Blowing Agents by DSC (928) 1860
A. Prasad, M. Shanker, Millennium Petrochemicals Inc.

T28—Metallocene Polymers—Catalysts, Processes and Applications
The Metallocene-Like Repolymerization Effects of Neoalkoxy Titanium and Zirconium Esters (430) 1866
S. J. Monte, Kenrich Petrochemicals, Inc.
Single-Site Olefin Polymerization Using Non-Metallocene Catalysts (366) 1871
L. V. Cribs, B. P. Etherton, G. G. Hlatky, S. Wang, Lyondell Petrochemical Company
Effect of Ethylene-Propylene Rubber Concentration and Composition on the Properties of UNIPOL Polypropylene Impact Copolymer Cast Film (715) 1875
A. M. Chatterjee, Union Carbide Corporation
Influence of Branch Distribution on the Rheological and Processing Behavior of LDPE Resins (336) 1881
S. K. Goyal, J. Auger, E. Karbashewski, R. Saetre, NOVA Chemicals Ltd.
Properties and Film Applications of Metallocene-Based Isotactic Polypropylenes (338) 1887
A. Hanyu, R. Wheat, Fina Oil and Chemical Company
Solid Phosphite Antioxidants: Their Effect on Processing and Product Quality in LLDPE Blown Film Extrusion (744) 1892
D. L. Turnage, GE Specialty Chemicals
Compressive Stress Relaxation of Closed-Cell, Metallocene-Based Polyolefin Foams (648) 1897
C. U. Bhatt, S. A. Khan, North Carolina State University
C. R. Hwang, Becon Dickinson Research Center

W28—Polymer Foams—Supercritical Foams
Modeling of PS/Supercritical CO₂ Solution Viscosities (937) 1902
M. Lee, C. Tzoganakis, University of Waterloo
C. B. Park, University of Toronto
A Non-Isothermal Model to Study the Influence of Blowing Agent Concentration on Polymer Viscosity and Gas Diffusivity in Thermoplastic Foam Extrusion (1) 1907
N. S. Ramesh, N. Malwitz, Sealed Air Corporation
Diffusivity, Solubility and Permeability of Blowing Agents in Polystyrene at Low Pressures (84) 1913
C. P. Park, Dow Deutschland Inc.
Determination of the Solubility and Diffusivity of Gases in Polymers by Using a High-Pressure Magnet-Suspension-Balance (208) 1918
O. Pfannschmidt, W. Michaeli, Institute for Plastics Processing (IKV)
Polystyrene/Acrylic Blends and Their Application in Foam Production. Part One: R22/142b Blowing Agent (115) 1922
P. J. Smith, B. J. Cross, ICI Acrylics
Ultrasonic Characterization and Rheology of Polymer Foams (136) 1927
A. Sahnoune, A. Hamel, L. Piché, Industrial Materials Institute

xxx / ANTEC '98
H20—Polymer Foams: Microcellular Foams

Rheologically Improved Polyesters for Foams (45) ... 1934
K. C. Khemani, Eastman Chemical Company

CO2-Blown PETG Foams (807). .. 1939
P. Handa, B. Wong, Z. Zhang, Institute for Chemical Process and Environmental Technology
V. Kumar, S. Eddy, University of Washington
K. Khemani, Eastman Chemical Company

Solid-State Microcellular CPEt Foams: The Effect of Nucleating Agents and Impact Modifiers (828) 1944
C. Barlow, J. Weller, R. Bordia, V. Kumar, University of Washington

Effect of Morphology on Barrier Properties of Poly(ethylene terephthalate) (227) 1949
A. Natu, E. A. Lofgren, W. Kollen, S. A. Jabarin, The University of Toledo

Approach to the Production of Low-Density, Microcellular Foams in Extrusion (504) 1958
A. H. Behravesh, C. B. Park, R. D. Venter, University of Toronto

Characterization of Microcellular Foamed Plastic/Cellulosic Fiber Composites (618) 1968
L. M. Matuana, C. B. Park, J. J. Balatinecz, University of Toronto

PLASTICS ANALYSIS/ENGINEERING PROPERTIES AND STRUCTURE DIVISION

M12—Application and Interpretation of DSC—Physical and Chemical Aging

*Miscible Blends of Atactic Polystyrene and Poly(2,6-dimethyl-1,4-phenylene oxide): Part 1.
Non-Equilibrium Glassy Behavior Probed by Calorimetry and Dilatometry (970) 1976
C. G. Robertson, G. L. Wilkes, Virginia Polytechnic Institute and State University

*Miscible Blends of Atactic Polystyrene and Poly(2,6-dimethyl-1,4-phenylene oxide): Part 2.
Application of Cooperativity Theory to Glassy State Relaxations (803). 1981
C. G. Robertson, G. L. Wilkes, Virginia Polytechnic Institute and State University

L. Woo, Y. S. Ding, M. T. K. Ling, C. Qin, A. Khare, Baxter Healthcare Corporation

*Glass Transition and Melting Behavior of Poly(ethylene terephthalate)/Poly(ethylene 2,6-naphthalate) Blends (226). .. 1991
Y. Shi, S. A. Jabarin, The University of Toledo

M27—Application and Interpretation of DSC—SemiCrystalline Polymers

Calibration of Fractionated Differential Scanning Calorimetry through Temperature
Rising Elution Fraction (539). .. 2000
M. Zhang, J. Huang, D. T. Lynch, S. E. Wanke, University of Alberta

Thermal Fractionation of Polyolefins Using DSC (421) .. 2004
R. A. Shanks, K. M. Drummond, RMIT University

Use of the SSA Technique for Polyolefin Characterization (611) ... 2007
M. L. Arnal, Z. H. Hernández, M. Matos, J. J. Sánchez, G. Méndez, A. Sánchez, A. Müller,
Universidad Simón Bolívar

New Polyolefins Characterization by Instrumental Analysis (612) ... 2012
C. Gartner, J. D. Sierra, Instituto de Capacitación e Investigación del Plástico y del Caucho
R. Avakian, GE Specialty Chemicals

Crystallisation Mechanism of Vectra™ A Liquid Crystal Polymer (118). 2017
T.-S. Chung, M. Cheng, S. H. Goh, National University of Singapore

Crystallization Kinetics of Poly(ethylene terephthalate)/Poly(ethylene 2,6 naphthalate) Blends (228). 2022
Y. Shi, S. A. Jabarin, The University of Toledo

Determination of Initial Crystallinity of Polyethylene Terephthalate Using DSC
and the Extrapolated Enthalpy Technique (661). .. 2027
R. B. Cassel, B. Twombly, The Perkin-Elmer Corporation

*Present in a joint session.

ANTEC ’98 / xxxi
M24—Polymer Structure and Morphology by Microscopy Methods

*Morphological Characterization of Mechanically Alloyed PET/Vectra Blends by X-Ray Microscopy (557) .. 1474
 A. P. Smith, C. Bai, R. J. Spontak, C. M. Balik, C. C. Koch, North Carolina State University
 H. Ade, C. K. Saw, Hoechst-Celanese Corporation

*Electron Microscopy Studies of Microstructured Polymer-Solvent Systems (559) 1479
 J. H. Laurer, R. J. Spontak, North Carolina State University

*Morphology of Reactive Polypropylene-Polyetheramine Blends (448) 1484
 B. J. Foran, D. C. Martin, The University of Michigan
 C. Henkee, R. J. Clark, Huntsman Corporation

*Morphology Evolution and Properties of Physically and Reactor Compatibilized Polypropylene-Polystyrene Blends (681) 1489
 A. A. Adewole, M. D. Wolkowicz, Montell Polyolefins
 L. Mascia, Loughborough University
 C. G. Gogos, Stevens Institute of Technology

*Crystallization Morphology and Crystallization Kinetics of a Liquid Crystalline Polyimide (117) ... 1494
 T. S. Chung, S. L. Liu, National University of Singapore
 H. Oikawa, A. Yamaguchi, Mitsui Toatsu Chemicals, Inc.

*A Quantitative Description of the Effects of Molecular Weight and Atactic Level on the Spherulite Growth Rate of Ziegler-Natta Isotactic Polypropylene (354) 1499
 J. C. Michel, Fina Research

T9—Application and Interpretation of DSC and TMDSC

*Application of the Advanced Thermal Analysis System (ATHAS) to Differential Scanning Calorimetry (DSC) and Temperature-Modulated DSC of Polymers (127) 2032
 B. Wunderlich, M. Pyda, University of Tennessee; Oak Ridge National Laboratory

*Modulated Differential Scanning Calorimetry to Study Reacting Polymer Systems (363) 2037
 B. Van Mele, G. Van Assche, A. Van Hemelrijk, Vrije Universiteit Brussel

 S. L. Simon, University of Pittsburgh
 G. B. McKenna, National Institute of Standards and Technology

T30—Small Angle Scattering for the Industrial Plastics Laboratory

*Small-Angle Scattering for the Industrial Plastics Laboratory—An Overview (649) 2048
 J. D. Barnes, National Institute of Standards and Technology

*Synchrotron X-ray Scattering Applications in Crystallization and Deformation of Polymers (579) .. 2052
 F. Yeh, B. S. Hsiao, B. Chu, SUNY at Stony Brook
 B. Sauver, E. L. du Pont de Nemours and Company, Inc.

*The Use of Sans for the Miscibility of Polyolefins: Measurement and Application (802) .. 2056
 D. J. Lohse, Exxon Research & Engineering Co.

*Acceleration of Spherulite Growth Rates of Nylon 6,6 by Comonomer Addition (485) 2060
 S. Schreiber, P. J. Phillips, University of Tennessee

*Small Angle Scattering Studies of Dendrimer Blends and Interpenetrating Polymer Networks (810) .. 2065
 B. J. Bauer, A. Topp, T. J. Prosa, D.-W. Liu, C. L. Jackson, E. J. Amis,
 National Institute of Standards and Technology

*Use of Synchrotron Radiation in Plastics Analysis (724) ... 2070
 M. Rabeony, H. Shao, K. S. Liang, Exxon Research and Engineering
 E. Siakali-Kioulafa, N. Hadjichristidis, University of Athens

W11—Real-Time Measurements for Polymer Processing

*Ultrasonic Melt Temperature Measurement during Extrusion (924) 2076
 J. Shen, R. Edwards, C. L. Thomas, University of Utah
 A. J. Bur, National Institute of Standards and Technology

*Present in a joint session.
W29—New Methods of Analysis for Molecular Weight Determination

Major Origins of Mass Discrimination Encountered in the MALDI-TOF Analysis of Polydisperse Polymers (900) .. 2096
B. Guo, H. Rashidzadeh, Cleveland State University

Temperature Gradient Interaction Chromatography of Polymers (238) 2101
T. Chang, W. Lee, H. C. Lee, Pohang University of Science and Technology
J. W. Mays, S. Harville, D. J. Frater, University of Alabama at Birmingham

Polydispersity Analysis of Fractionated Synthetic Polymers by MALDI/TOF Mass Spectrometry (263) ... 2106
H. Ji, W. K. Nondez, J. W. Mays, University of Alabama at Birmingham

Comparison of Molecular Weight Moments from MALDI-TOF-MS with Other Absolute Methods on a Standard Reference Polymer (99) .. 2109
C. M. Gutman, W. R. Blair, National Institute of Standards and Technology
P. O. Danis, Rohm and Haas

Application of GC/MS in Thermoplastics Problem Solving (193) .. 2114
D. C. Shaker, H. C. Kim, LNP Engineering Plastics

Molecular Characterization of Complex Polymers by Full Desorption/SEC Coupling (577) .. 2119
D. Berek, S. H. Nguyen, Slovak Academy of Sciences

Characterization of the Degradation Process of Biodegradable Packaging Materials by Size-Exclusion Chromatography (745) 2121
G. Twardon, M. Bruckschlegel, W.-R. Müller, F. Twardon, University of Stuttgart

W30—Rheology in Plastics Characterization

*Rheology and Constitutive Equations for ABS Polymer Melts (543) .. 2128
S. E. Solovyov, C. E. Scott, Massachusetts Institute of Technology
T. L. Virkler, Bayer Corporation

*Forced Reptation Rheology Model (461) .. 2133
K. A. Koppi, B. J. Meister, M. A. Spalding, The Dow Chemical Company

*A Hybrid Nonlinear Constitutive Model: Comparisons with Multiple Step Data for a Polyurethane Rubber (321) .. 2138
V. Rouiller, G. B. McKenna, National Institute of Standards and Technology

*Temperature Effects on the Shear-Thickening and Flow-Induced Structure Formation in Semidilute Solutions of Gently-Solubilized Starches (74) .. 2144
C. J. Carriere, A. R. Loffredo, United States Department of Agriculture

*Rheology and Processing Experience of New Metallocene Polyolefins (738) 2148

*Temperature Shift Factors for the Segmental Relaxation of Polycarbonate Below the Glass Transition (988) .. 2152
P. A. O’Connell, G. B. McKenna, National Institute of Standards and Technology

*Melt Viscoelasticity of Novel Glassy Phosphate Polymers (307) .. 2158
J. U. Otaigbe, Iowa State University
R. L. Sammler, The Dow Chemical Company

*A Nonlinear Fluid Standard Reference Material: Progress Report (221) .. 2162
C. R. Schultheisz, G. B. McKenna, National Institute of Standards and Technology

*Present in a joint session.
Measurements of Thermo-Mechanical Properties of Thin Polymer Films (274) 2168
C. Feger, IBM T. J. Watson Research Center

Costs of Material Data Measurement (299) .. 2172
D. Blaese, E. Schmachtenberg, University of Essen

Methodology for the Investigation of the Viscoelastic Properties of Biopolymers (765) 2177
B. Twombly, B. Cassel, The Perkin-Elmer Company
A. T. Miller, Devro Inc.

Izod Impact Strength of Polycarbonate and Effect of Moisture Content on the Same (407) 2182
R. Bhardwaj, GE Plastics India Ltd.

Physical Aging Behavior in Amorphous PEN Film as Measured by Creep (679) 2198
M. L. Cerrada, G. B. McKenna, National Institute of Standards and Technology
J. M. O'Reilly, J. Greener, J. R. Gillmor, Eastman Kodak Company

Prediction of Thermal and Fire Resistance of Phenolic Resins by Dynamic TG Analysis (837) 2206
H. Chtourou, A. Atarsia, B. Fisa, École Polytechnique de Montréal

Identification of Polymer Products via Analytical Pyrolysis (948) 2211
T. P. Wampler, C. P. Zawodny, CDS Analytical, Inc.

Practical Analysis Techniques of Polymer Fillers by Fourier Transform Infrared Spectroscopy (FTIR) (766) 2215
B. J. Coles, C. J. Hall, Hauser, Inc.

Quantitative Analysis of Monomer & Oligomer in Polyamide-6 by FTIR Method (408) 2219
R. Bhardwaj, P. Bakshi, GE Plastics India Ltd.

A New Approach to the Characterization of Molecular Orientation in Uniaxially and Biaxially Stretched Samples of PET (580) 2223
K. C. Cole, K. T. Nguyen, A. Ajji, Industrial Materials Institute
H. B. Daly, B. Sanschagrin, École Polytechnique de Montréal

Are Injection Molded Test Specimens Homogeneous and Representative? (650) 2228
B. Guenther, Universität Karlsruhe (TH)
G. Bendrich, N. Mathis, University of New Brunswick

Control of Internal Stresses in Injection Molded Parts through the Use of Vibrational Molding, “RHEOMOLDINGSM”, Technology (317) 2233
A. Kikuchi, M. Galop, H. L. Brown, A. Bubel, TherMold Partners L.P.

COMPOSITES DIVISION

M13—Composite Materials I

Mechanical Performance of Pultruded Carbon Fiber/Vinyl Ester Composites Processed with Physically Dissimilar Sizing Agents (700) 2240
N. S. Broyles, K. N. E. Vergheese, R. M. Davis, J. J. Lesko, J. S. Riffle, Virginia Polytechnic Institute and State University

The Effect of Water on the Fatigue Behavior for a Pultruded Glass-Reinforced Composite (364) 2245
K. Liao, C. R. Schultheisz, D. L. Hunston, National Institute of Standards and Technology
L. C. Brinson, Northwestern University

Polyetherimide Epoxy-Based Prepreg Systems with Variable Temperature Cure Capability (545) 2250
B. S. Hayes, J. C. Seferis, University of Washington

Effect of Hot-Wet Environments on E-Glass/Vinylester Composites (343) 2255
S. Sridharan, A.-H. Zureick, J. D. Muzzy, Georgia Institute of Technology

M29—Composite Materials II: Thermoplastics

Mechanical Properties of Polyethylene Terephthalate Composite Hybrids (693) 2262
M. Kao, A. Kovacich, Johnson Controls, Inc.
Y. Zhang, J. Muzzy, Georgia Institute of Technology
The Role of the Interface in Toughness of Polypropylene/Glass Composites (271) .. 2266
E. D. Williams, Drexel University
L. S. Schadler, Rensselaer Polytechnic Institute
A. Lustiger, Exxon Research and Engineering

Thermoplastic Composites Reinforced with Melt Processable Glass (171) .. 2271
R. T. Young, D. G. Baird, Virginia Polytechnic Institute and State University

Permeation of Glass Mats by Polypropylene (344) ... 2276
Y. Zhang, J. Muzzy, Georgia Institute of Technology

Glass Mat Reinforced Recycled Thermoplastic (GMRT) (575) .. 2281
D. W. Holty, J. R. Stoll, Georgia Composites, Inc.
Y. Zhang, J. Kinard, J. D. Muzzy, Georgia Institute of Technology

Thermoforming of Continuous Glass Fiber/Polypropylene Composites: Non-Isothermal Crystallization Kinetics (673) 2286
J. Denault, Y. Youseff, Industrial Materials Institute

T13—Composites Processing I

Preforming for the 21st Century (938) .. 2292
D. T. Buckley, American GFM Corporation

The “GCFP”: A Totally Automated Near Net Dry Fiber Preform Manufacturing Process for the Composite Industry (978) .. 2296
T. Drummond, Global Composites, Inc.

Liquid Composite Molding of Tackified Fiber Preforms (380) .. 2306
V. Rohatgi, C.-H. Shih, L. J. Lee, The Ohio State University
C. Howe, Monash University

Finite Element Analysis of Three-Dimensional RTM Process (467). .. 2311

Aspects of the Tensile Response of Random Continuous Glass/Epoxy Composites (186) 2316
O. I. Okoli, G. F. Smith, University of Warwick

T33—Composites Processing II: RTM

Finite Element Analysis of Three-Dimensional RTM Process (467) .. 2322

Numerical Simulations of Mold Filling for Design and Control of RTM Process (703) .. 2327
P. Simacek, E. M. Sozer, S. G. Advani, University of Delaware

Optimization of Channel Design in VARTM Processing (525). .. 2336
R. Mathur, S. G. Advani, University of Delaware
B. K. Fink, Army Research Laboratory

Resin Transfer Molding of BMIs and Polyimides (266) .. 2341
J. S. Colton, Georgia Institute of Technology

W13—The Use of Composites and Failure Analysis in Medical Devices

*Medical Material Opportunities for the 21st Century (740) .. 2720
L. Woo, M. T. K. Ling, S. Y. Ding, A. R. Khare, Baxter International

*Failure Progression and Mechanisms of Irradiated Polypropylenes and Other Medical Polymers (741) .. 2725
L. Woo, S. Y. Ding, A. Khare, M. T. K. Ling, Baxter International

*Metal Free Dental Bridge (285) .. 2730
A. Karmaker, A. Prasad, Jeneric/Pentron Inc.

*Reinforced Starch Based Blends: A New Alternative for Bioreorbable Load-Bearing Implants (165) .. 2733
R. L. Reis, University of Porto
A. M. Cunha, University of Minho

*Impact Test with Flat-Ended Impactor for Mouthguard Materials: Specimen

*Present in a joint session.
W34—Composites and Joining

*Effects of a Low Modulus Interphase on the Single-Fiber Fragmentation of Carbon/Epoxy Composites (817) .. 2346
M. Tanoglu, G. R. Palmese, S. H. McKnight, J. W. Gillespie, Jr., University of Delaware

*Monitoring Composites with Optical Fiber Sensor Systems (953) .. 2351
R. S. Parnas, J. P. Dunkers, R. A. Neff, National Institute of Standards and Technology

*Control of Warpage and Residual Stresses during the Automated Tow Placement Process (818) 2356
J. Tierney, J. W. Gillespie, Jr., University of Delaware

*Mechanical Properties of Long Fiber Reinforced Phenolic Composites (108) 2361
J. Wolfrum, G. W. Ehrenstein, University Erlangen-Nuremberg

*A Predictive Neural Network Controller for the Thermoplastic Composite Tow-Placement System (819) .. 2366
D. Heider, M. J. Piovoso, J. W. Gillespie, Jr., University of Delaware

H11—Nanocomposites I

Nylon-6 Block Copolymer Reinforced Using Phenolic Resin Filler for Dimensional Stability and Enhanced Physical Properties (345) ... 2372
M. J. Lozano-Gonzalez, E. A. Gonzalez de los Santos, Centro De Investigacion En Quimica Aplicada
A. F. Johnson, University of Leeds

Thermoplastic Polyimide + Polymer Liquid Crystal Molecular Composites for the Microelectronic Devices (437) ... 2377
W. Brostow, N. A. D'Souza, B. Gopalanarayanan, University of North Texas

Liquid Crystalline Polymer (LCP) Reinforced Polypropylene—Mechanical Properties of Consolidated Fabric Preforms (248) .. 2385
T. J. Xue, D. G. Baird, Virginia Polytechnic Institute and State University

Polyurethane Elastomers with Nano-Fillers (775) ... 2390
Z. S. Petrović, I. Javni, Pittsburg State University
A. Waddon, University of Massachusetts

Effects of Processing Conditions on Parts Reinforced with Short Fiber TLCP's Generated via Fused Deposition Modeling (191) ... 2394
R. W. Gray IV, D. G. Baird, J. H. Bohn, Virginia Polytechnic Institute and State University

H24—Nanocomposites II

Nanocomposites Based on a Synthetic Layer Silicate and Polyamide-12 (477) .. 2400
J. Kressler, Martin-Luther-Universität Halle-Wittenberg
R. Thomann, Albert-Ludwigs-Universität Freiburg

Structural Characterization of Nylon 6 Composites Reinforced with Microfibrous Calcium Silicate Hydrate (219) ... 2405
H. Tanaka, K. Watanabe, Ube Industries, Ltd.

Preparation of Conducting Composites and Studies on Some Physical Properties (119) .. 2410
J.-S. Park, An Sung National University
S.-H. Ryu, Kyung Hee University
O.-H. Chung, Sun Chon National University

Effect of Aging on Mineral-Filled Nanocomposites (180) .. 2415
A. Y. Goldman, J. A. Montes, A. Barajas, G. Beall, Nanocor, Inc.
D. D. Eisenhour, American Colloid Co.

ALLOYS AND BLENDS DIVISION

T38—Compatibility and Compatibilization

Polymer Blends of PA6 and PPE Compatibilized by a Multifunctional Epoxy Coupler (59) ... 2428
F.-C. Chang, National Chiao-Tung University
W19—Property and Application

Conductive Polyphenylene Ether/Polymide Blends for Electrostatic Painting Applications (768)
J. J. Scobbo, Jr.

The Effect of Molecular Weight on Properties of Ternary Acrylic-Based Polycarbonate Blends (110)
D. Zimmerman, CYRO Industries

Carbon Black Filled Immiscible Blend of Poly(vinylidene fluoride) and High Density Polyethylene: Electrical Properties and Morphology (87)
J. Feng, C.-M. Chan, The Hong Kong University of Science and Technology

Non-Hygroscopic & Better Colorability Thermoplastic Vulcanizates for Extrusion & Injection Molding (635)
J. Batra, K. G. Saunders, L. Wallace, J. Andries, Teknor Apex Company

Blends of Bitumen with Polymers for Built Up Roofing Membranes (258)
T. McNally, A. H. Fawcett, G. M. McNally, The Queen's University of Belfast
F. Andrews, J. Clarke, Dussek-Campbell Ltd.

W38—Testing and Analysis

Modification of Syndiotactic Polystyrene (476)
J. Kressler, Martin-Luther-Universität Halle-Wittenberg
R. Thomann, Albert-Ludwigs-Universität Freiburg

Dissolution Rates of Blends of Poly(ethylmethacrylate) with Poly(p-hydroxy styrene) (174)
F. Rodriguez, K. A. Cavicchi, Cornell University

PVC Polyetherester Polyblends (947)
R. D. Deanin, M. B. Sheth, University of Massachusetts, Lowell

Blends of Amide-Modified Polybutylene Terephthalate and Polycarbonate (971)
B. Chisholm, General Electric Plastics

Analysis of the Mechanical Properties of Biodegradable Films Made from Blends of Polyactic Acid (PLA) and Polymers by Blown Film Extrusion (891)
G. V. Laverde, S. P. McCarthy, University of Massachusetts, Lowell

Crystallization Behavior of Nylon-Polyester Blends (915)
A. Subramonian, Tennessee Tech University

H13—Novel Material and Process

Blending Studies of a Novel Oligomer and a Thermoplastic (278)
J. E. Brooks, T. C. Ward, Virginia Polytechnic Institute and State University

Polystyrene Toughened with Novel Hyperbranched Polymer (965)
T. J. Mulkern, N. C. B. Tan, United States Army Research Laboratory

ANTEC '98 / xxxvii
H25—Morphology Development and Control

Mechanisms of Morphology Development and Control in Polymer-Polymer Blends (547) .. 2548
C. W. Macosko, University of Minnesota
The Effect of Shear Rate and Composition on Polypropylene-Elastomer Blend Morphology (420) 2550
R. A. Shanks, RMIT University
B. E. Tiganis, CSIRO Building, Construction and Engineering
Miscibility and Co-Continuous Morphology of Polypropylene-Polyethylene Blends (423) ... 2553
R. A. Shanks, J. Li, L. Yu, RMIT University
Stability of Blends with Co-Continuous Morphologies during Injection Molding (373) ... 2556
R. C. Willemsen, R. Doelam, A. D. Gotis, Delft University of Technology
Study of Shear-Induced Structural Changes and Phase Behavior of SAN/PMMA Blends (196) 2561
Z. Hong, M. T. Shaw, R. A. Weiss, University of Connecticut
Phase Structure and Morphology: Designing a New Class of Heterophase PP Copolymers (144) 2565
C. E. Paulik, W. Neißl, PCD Polymere Ges.m.b.H.
Effects of Supercritical Carbon Dioxide on PE/PS Blend Viscosity and Morphology (155) .. 2570
M. Lee, C. Tzoganakis, University of Waterloo
C. B. Park, University of Toronto

VOLUME III—SPECIAL AREAS

COLOR AND APPEARANCE DIVISION

T1—Coloring Issues

Color Myths in the Plastic Industry (121) .. 2576
J. Wood, Teknor Color Company
Colored Engineering Resins for High Strain/Thin Walled Applications (607) ... 2579
B. M. Mulholland, TICONA
Coloring of Polyesters (887) ... 2583
R. L. Abrams, Ferro Corporation

T20—Pigments and Processing

Metallic Looking Plastics with New Silver and Colored Aluminum Pigments (914) ... 2586
H.-H. Bunge, Eckart America L.P.
Reactive Trapping of 3,3'-Dichlorobenzidine Decomposition Products in Polyethylene-Based Diarylide Pigment Concentrates (730) ... 2589
W. Anjowski, Colortech Inc.
C. J. B. Dobbin, Industrial Research & Development Institute
Ultramarine Blue, an Old Pigment, a New Process (518) ... 2594
T. Guilmin, Prayon Pigments S.A.
J. Philipps, W. Michaeli, Institute for Plastics Processing (IKV)
Developing a Tool for On-Line Fiber Property Measurement Using Haze and Gloss (582) ... 2600
G. M. Wu, Chang Gung University

AUTOMOTIVE DIVISION

H8—Automotive I

Simplifying the Task of Identifying Successful Plastic Material/Design Combinations for Efficient Energy Management (304) ... 2606
E. A. Laabs, Chrysler Corporation
P. J. Burke, Exxon Chemical Company