CONTENTS

VOLUME I—PROCESSING

EXTRUSION DIVISION

M1—Twin Screw Processing

Reactive Extrusion: Grafting GMA onto Polypropylene (839) .. 2
C. Roux, M. A. Huneault, M. F. Champagne, Industrial Materials Institute
Effect of Compounding Conditions and Composition on the Performance of Talc/Ethylene-Octene
Copolymer/Polypropylene Blends (TPO) (840) ... 7
M. A. Huneault, P. G. Godfroy, Industrial Materials Institute
P. G. Lafleur, Ecole Polytechnique de Montréal
Comparison of Experimentally Measured and Numerically Predicted Velocity Distributions
in a Co-Rotating Twin-Screw Extruder (671) ... 12
A. Kiani, Krupp Werner & Pfleiderer Corporation
S. Bakalis, M. V. Karwe, Rutgers, The State University of New Jersey
Method to Evaluate the Homogenization of Bimodal Polyethylene in a Co-Rotating
Twin Screw Extruder (309) ... 17
T. Rische, M. Stephan, Institute of Polymer Research Dresden
U. Burkhardt, P. Heidemeyer, Werner & Pfleiderer GmbH
Mixing Characterization Based on Drag Flow Phase III—Effect of Kneading Blocks
on a Viscoelastic System (833) ... 21
D. M. Swann, D. I. Bigio, University of Maryland
F. L. Magnus, C. Kiehl, The Goodyear Tire and Rubber Company

M2—TAPPI

A Rheological Model for the Prediction of Polyethylene Blown Film Properties (3001) 30
E. W. Kuijk, P. P. Tas, P. Neuteboom, DSM Research B.V.
The Influence of Sealant Modulus on the Bending Stiffness of Multilayer Films (3002) 35
B. A. Morris, J. D. Vansant, DuPont Company
A Model of Polymer Melt Flow in Spiral Mandrel Dies (3008) ... 41
H. Mavridis, Equisar Chemicals, LP
A Comparison of Grooved Feed vs. Smooth Bore Extrusion on LLDPE Film Properties
and Film Quality (3010) .. 45
G. Panagopoulos, Jr., Montell USA Inc.

M18—Twin Screw Performance

Flow Analysis of Twin Screw Extruders—Pressure and Drag Capability of Various
Twin Screw Elements (672) ... 48
A. Kiani, J. E. Curry, P. G. Andersen, Krupp Werner & Pfleiderer Corporation
Analysis of Micromixing in Twin Screw Extruders Using Reactive Polymer Tracers (157) 55
G. Shearer, C. Tzoganakis, University of Waterloo
Characterization of Kneading Block Performance in Co-Rotating Twin Screw Extruders (831) 60
J. Cheng, Y. Xie, D. Bigio, University of Maryland
A. Lee, P. Andersen, Werner & Pfleiderer
Experimental Studies on Melting and Fill Factor Distribution and Comparison to Simulation
in a Modular Self-Wiping Co-Rotating Twin Screw Extruder (875) 65
S. Bawiskar, J. L. White, Institute of Polymer Engineering
Influence of Polymer State and Kneading Block Structure on Mixing Efficiency of PE/EPODE
Blends in Co-Rotating Intermeshing Twin-Screw Extruder (297) .. 70
X. Geng, L. Zhu, Beijing University of Chemical Technology
M19—Single Screw

Shear Refining of Branched Low Density Polyethylene (642) .. 76
C. I. Chung, T. M. Powell, Rensselaer Polytechnic Institute
C. L. Werling, The Dow Chemical Company
An Empirical Study for the Optimization of the Barrier Flight Clearance for
Single Stage Extrusion Using Design of Experiment (70) .. 81
T. W. Womer, G. L. Harrah, Spirex Corporation
Investigation of the Shear Stresses Experienced during Melting Using Novel
Microencapsulated Dye Sensors (199) .. 87
D. C. Clark, K. Geramita, W. E. Baker, Queen's University
Sensible Computerized Extrusion Control for Simple Systems (554) 92
W. A. Kramer, American Kuhne, Inc.
Computer Simulation of Melt Flow in Wave Screws (754) .. 97
P. Fan, J. Vlachopoulos, McMaster University
N. Smith, Polydynamics Inc.
H. Sheth, HPM Corporation
Why Corrosion Resistant Screws Can Bind in the Extruder Barrel (979) 102
C. Rauwendaal, Rauwendaal Extrusion Engineering, Inc.
P. Gramann, The Madison Group: PPRC

T2—Film Processing

The Aerodynamics of Cooling of Blown Film Bubbles (182) .. 108
V. Sidiropoulos, P. E. Wood, J. Vlachopoulos, McMaster University
Tension in Multilayer Film Casting of Polymer Melts (472) .. 113
B. Bian, A. Co, University of Maine
The Effect of Coextrusion on Bubble Kinematics, Temperature Distribution and Property
Development in the Blown Film Process (75) ... 118
B. A. Morris, DuPont
Investigation into the Cooling Characteristics of Blown Film Extrusion Lines (212) 123
J. Hauck, W. Michaeli, Institute for Plastics Processing (IKV)
Metallocene Catalysed Polyethylene in Blown Film Applications—A Comparison
between Monoextruded Blended Films and Coextruded Films (511) 128
C. M. Beagan, G. M. McNally, W. R. Murphy, The Queen's University of Belfast

T21—Single Screw

Future of Single Screw Extruder Screw Design (184) ... 134
R. A. Barr, Robert Barr, Inc.
An Experimental Investigation of Solids Conveying in Smooth and Grooved Barrel
Single-Screw Plasticating Extruders (458) .. 136
M. A. Spalding, K. S. Hyun, Dow Plastics
R. Hoffmann, Orbitsa-Film GmbH
Control Volume Analysis of Feed Flow in Extruders (382) .. 142
S. J. Derezinski, Eastman Kodak Company

W1—Film Properties

Predicting the Processability of BOPP (Biaxially Oriented Polypropylene) Material
for Film Applications on Laboratory Scale (152). .. 150
V. Rauschenberger, BASF AG
Double Bubble Tubular Film Extrusion Investigation of Polyamide 6 (877) 155
S. Rhee, J. L. White, Institute of Polymer Engineering
The Effects of Molecular Structure, Rheology, Morphology and Orientation on
Polyethylene Blown Film Properties (339) ... 160
A. M. Sukhadia, Phillips Petroleum Company
Tensile Properties and Orientation Evolution with Processing Conditions in
Polyethylene Blown Films (729) ... 169
Surface Roughness of Blown Linear Low Density Polyethylene Films (422) 174
R. A. Shanks, K. M. Drummond, J. Hopewell, J. O'Leary, F. Cser, RMIT University

viii / ANTEC '98
W2—Mixing

Influence of Design on Mixing Performance in an Axial Discharge Continuous Mixer-LCMAX 40 (944) .. 178
C.-H. Yao, I. Manas-Zloczower, Case Western Reserve University

In-situ Visualization of Novel Polymer Droplet Morphologies during Extrusion (711) .. 183
E. K. Hobbie, K. B. Migler, National Institute of Standards and Technology

A Comparative Study of the Use of High Intensity Dispersive Mixers and Co-Rotating Twin Screw Extruders in the Manufacture of High Quality Color Concentrates (731) .. 189
A. Rom-Roginski, Colortech, Inc.
C. J. B. Dobbin, Industrial Research & Development Institute

Mixing of a Low Molecular Weight Additive in a Co-Rotating TSE: Morphological Analysis of a HDPE/PDMS System (834) .. 198
J. Cheng, R. Sanchez, S. Zerafati, D. I. Bigio, University of Maryland

Polymer and Particle Separation during Extrusion (187) .. 205
S. T. Balke, J. Hu, S. Joseph, A. Karami, R. Salerni, University of Toronto
M. Planeta, J. Suhay, H. Tamber, Macro Engineering and Technology Inc.

W21—Modeling

A Phenomenological Model for Flow-Induced Crystallization (910) .. 212
I. S. Dairanieh, A. J. McHugh, A. K. Doufas, University of Illinois

Relative Effects of Viscous and Elastic Forces on Layer Thickness Uniformity in Coextrusion (104) .. 217
J. L. Zryd, J. Dooley, The Dow Chemical Company

Comparative Study of Rhomboidal Distributive Mixing Sections Using Computer Modeling (496) .. 222
A. C. Rios, P. J. Gramann, E. Stanfield, T. A. Osswald, University of Wisconsin-Madison

Modeling of a Reactive Extrusion Process in a Single-Screw Extruder (192) .. 227
D. Strutt, C. Tzoganakis, T. A. Duever, University of Waterloo

Simulation of Phase Domain Breakup and Coalescence Using the Lattice-Boltzmann Method (684) .. 232
A. Suwa, C. E. Scott, Massachusetts Institute of Technology

Modeling of the Thermal Homogenising Effect of Cross-Hole Mixing Element for Single Stage Extrusion (200) .. 237
T. Wolff, W. Michaeli, Institute for Plastics Processing (IKV)

W22—Applied Extrusion

The Inter-Related Aspects of Scaling Up a Complete Tube Extrusion Line (934) .. 242
J. A. Colbert, Betol Machinery Ltd.

The Significance and Use of Statistics in the Profile Extrusion Process (32) .. 247
D. Cykana, S. Schick, Bemis Mfg. Co.

Blown Film Extrusion of LLDPE/LDPE Blends (134) .. 256
J.-H. Oh, I. Park, SK Corporation

H1—Single Screw Mixing

Experimental Study of Various Mixing Sections in a Single Screw Extruder (497) .. 262
A. C. Rios, T. A. Osswald, University of Wisconsin-Madison
M. P. Noriega, O. A. Estrada, Instituto de Capacitación e Investigación del Plástico y del Caúcho (ICIPC)

A Mixing Study of Various Single Screw Mixing Elements Using In-Line Melt Analysis (I.M.A.) (71) .. 267
G. Harrah, T. Womer, Spirex Corporation

Performance of a Stratablend Mixing Screw for Single-Screw Extrusion (340) .. 272
S. A. Somers, M. A. Spalding, K. R. Hughes, Dow Plastics
J. D. Frankland, Jr., NewCastle Industries

New Dispersive Mixers for Single Screw Extruders (884) .. 277
C. Rauwendaal, Rauwendaal Extrusion Engineering, Inc.
T. Osswald, University of Wisconsin-Madison
P. Gramann, B. Davis, The Madison Group

Screw Configuration Effects on the Colour Mixing Characteristics of Polymer in Single-Screw Extrusion (94) .. 284
C.-Y. W. Anthony, The University of Hong Kong
T. Liu, Sichuan Union University
H2—Die Design

A Three-Dimensional Analysis of the Effect of Die Body Deflection in the Design of Extrusion Dies (883) ... 290
W. A. Gifford, Extrusion Dies, Inc.

Coextrusion of an Automotive Profile with Metal Insert Numerical Simulation and Die Design (235) .. 299
Y. D. Rubin, T. M. Marchal, Polyflow S.A.

Recent Research on Mathematical Design of Spiral Mandrel Dies (325) .. 309
A. Limper, H. Stieglitz, University of Paderborn

Characterization of the Lubricant Layer Formed at the Interface between the Extrudate and the Die Wall during the Extrusion of High Density Polyethylene and Fluoroelastomer Blends (86) .. 314
H. H.-K. Lo, C.-M. Chan, S.-H. Zhu, Hong Kong University of Science and Technology

H15—Practical Extrusion Applications

Recording Pressure and Melt Temperature in Extrusion (867) .. 320
E. L. Steward, American Kuhne Corporation

Effect of a High Performance Melt Pump and Drive System on Flow Rate Uniformity (932) 325
D. R. Hinrichs, Plastex Consulting Services

Gear Pump Bearing Design for Improved Plastics Processing (469) .. 330
G. Woodcock, A. Robinson, Dynisco GSPC

Ultrasound: A Virtual Instrument Approach for Monitoring of Polymer Melt Variables (313) 335
E. C. Brown, T. L. D. Collins, A. J. Dawson, P. Olley, P. D. Coates, University of Bradford

Computer Based, Interactive Training in Extrusion (980) .. 340
C. Rauwendaal, Rauwendaal Extrusion Engineering, Inc.
K. Cantor, Pennsylvania College of Technology

INJECTION MOLDING DIVISION

M20—Novel Processes

Simultaneous Sandwich Injection Molding: Simulation and Experiment (567) .. 346
D. J. Lee, A. I. Isayev, J. L. White, University of Akron

Sequential Coinjection Hot Runner (565) .. 351
M. D. Moss, Kona Corporation

Advances in Power Injection Molding (767) .. 358
C. Ballard, M. Zedalis, AlliedSignal Inc.

Automatic Tuning of Injection Molding by the Virtual Search Method (983) .. 362
R. Ivester, National Institute of Standards and Technology

Processing Strategies for Thin Wall Injection Molding (675) .. 367
P. Tantakom, N. R. Schott, University of Massachusetts, Lowell

Monosandwich Injection Molding: Skin-Core-Structure and Properties of Sandwich-Molded Antielectrostatic Components (101) .. 372
K. Kuhmann, G. W. Ehrenstein, Lehrstuhl für Kunststofftechnik

M21—General Topics I

Simulations and Applications of Injection-Compression Molding (24) .. 378
S.-C. Chen, Y.-C. Chen, N.-T. Cheng, Chung Yuan Christian University

Importance of Volume Relaxation in the Prediction of Residual-Stresses Buildup (9) .. 383
H. Ghoneim, Rochester Institute of Technology

Effect of Moving Boundary on Channel Flow of Polymeric Melts (568) .. 388
C. Zook, Y. Zhang, A. I. Isayev, University of Akron

An Experimental Analysis of Injection Molding Melt Temperature (255) .. 393
C. Zhao, F. Gao, The Hong Kong University of Science and Technology

Correlation of Spiral and Radial Flow Lengths for Injection-Molded Thermoplastic Parts (166) .. 398
C. W. Fox, A. J. Poslinski, GE Corporate Research and Development

x / ANTEC '98
M36—Mold Making and Mold Design/Product Design and Development

*Tracking the Documentation of Mold Tooling (2037) .. 3350
B. A. Bergeron, University of Massachusetts, Lowell

*Student's Assessment of Data Sheets (2030) ... 3353
C. M. Shaffer, University of Massachusetts, Lowell

*Using Computer Software Analysis with Gas Assist Injection Molded Parts (2064) 3355
J. W. Hotchkiss, Penn State Erie, The Behrend College

The Use of Gas Assist in the Redesign of a Plastic Strap Wrench (2044) 3360
C. R. Dross, Penn State Erie, The Behrend College

Thin and Thick Cross-Sectional Walls for Foamed Polyolefin Parts (2045) 3367
C. Kanoza, D. Brosey, Penn State Erie, The Behrend College

Study of Adhesive Strength of Metal Backing to Stereolithography Molds (2061) 3371
C. D. Baker, C. A. Cheatle, Penn State Erie, The Behrend College

Flow Instabilities in Thin-Wall Injection Molding of Thermoplastic Polyurethane (2031) 3373
C. D. Smialek, C. L. Simpson, University of Massachusetts, Lowell

T3—Process Control I

Self-Adaptive Closed-Loop Cavity Pressure Control for Injection Moulding (202) 410
O. Schnerr, N. Kudlik, W. Michaeli, Institute for Plastics Processing (IKV)

Consistency of Multi Cavity Melt Control Injection Molding in a Commercial Application (131) 414
D. Kapoor, D. Kazmer, University of Massachusetts, Amherst

Utilization of Dynamic Feed Control for Commercial Applications (132) 419
B. Cahill, M. Niemeyer, GE Plastics

Switchover Methods (851) .. 431
J. J. Smith, Nypro, Inc.

T4—Gas Assisted Molding

Computer-Aided Gas-Assisted Injection-Molding of the Front Cover of Motorcycle
Headlight (433) ... 438
R.-Y. Chang, S.-C. Lin, National Tsing-Hua University
K.-C. Chen, Yue Ki Industrial Co., Ltd.
C.-H. Hsu, M.-H. Tsai, CoreTech System Co., Ltd.

Effects of Complex Rib Distributions on Mold Filling and Mechanical Properties
of Gas-Assisted Parts (696) ... 442
K. Cutright, O. Becker, K. W. Koelling, The Ohio State University

Computer Simulation and Experimental Verification of Gas-Assisted Injection Molding (505) 447
T. J. Wang, C-MOLD/AC Technology

H. H. Chiang, X. Lu, L. Fong, Gintic Institute of Manufacturing Technology

Statistical Experiment Study of Gas-Assisted Injection Molding Process (410) 454
J. Zhao, X. Lu, L. Fong, H. H. Chiang, Gintic Institute of Manufacturing Technology

W3—Process Control II

A Study on the Changes in the Properties of Optical Disk Substrate as a Function of
Injection Molding Shot Number (284) ... 460
K. J. Ko, Central R&D Center of SKC Ltd.

*Present in a joint session.
Injection Moulding: Intelligent Process Monitoring to Discriminate Material and Process Variations (314)
N. Khoshooee, A. J. Dawson, A. Key, P. D. Coates, University of Bradford
S. Kumar, Amoco Polymers

Adaptive Control of Nozzle Melt Packing Pressure (257)
Y. Yi, F. Gao, The Hong Kong University of Science & Technology

A Practical Approach to Process Development (644)
P. J. Blyskal, PreSource Technologies, Inc.
P. J. Meheran, Polymer Conversions, Inc.

W4—Materials I

Thermal Effects during the Flow of a Low-Density Polyethylene Melt along Circular Cross-Section Duct (48)
N. Sombatsompop, King Mongkut's Institute of Technology Thonburi (KMITT)
A. K. Wood, University of Manchester and UMIST

Shear Controlled Orientation Injection Molding of Polymeric Composites with Enhanced Properties (163)
R. L. Reis, University of Porto
A. M. Cunha, University of Minho
M. J. Bevis, Brunel University

Is the Shear Heating Phenomenon Truly Responsible for Viscosity Reduction in Thermoplastic Injection Molding? (348)
A. N. Larsen, J. McDonnell, M. VanDuine, D. Fisher, Ashland Chemical Company

The Effect Viscosity Has on the Pressure Loss through an Injection Molded Part (350)
B. Fierens, S. Mertes, Ashland Chemical Company

Injection Moulding Process Studies for Polyketones (537)
M. T. Martyn, P. D. Coates, University of Bradford
J. G. Bonner, N. Davidson, BP Chemicals Ltd.

W9—Injection Blow Molding

*Fundamentals of PET Stretch Blow Molded Containers (957)
R. J. Caldicott, DevTech Labs, Inc.

*Methods for the Measurement of Crystallinity of Preforms and Bottles Made from PET (940)
Z. Bashir, I. Al-Aloush, I. Al-Raqibah, M. Ibrahim, SABIC R&D

K. Hartwig, Krupp Corpoplast Maschinenbau GmbH

*Designing PET Preform Injection Molding Processes for the Lightest Practical Weight Offers Opportunities for Improved Productivity and Quality (797)
S. W. Zagarola, Terra Firma International, Ltd.

*Index PET Preform System—Molding Advantages and Bottle Performance Evaluation (578)
K. Engberg, M. Koch, Husky Injection Molding Systems Inc.

W11—Real-Time Measurements for Polymer Processing

*Ultrasonic Melt Temperature Measurement during Extrusion (924)
J. Shen, R. Edwards, C. L. Thomas, University of Utah
A. J. Bur, National Institute of Standards and Technology

*In-Line Dielectric Sensor for Process Measurements of Composition and Viscosity (175)
M. McBrearty, Chemical ElectroPhysics Corporation
S. Perusich, Auburn University

S. Vedula, M. G. Hansen, B. J. Deshpande, University of Tennessee

*An Optical Sensor for Measuring Fluorescence Anisotropy of Oriented Polymers (600)
A. J. Bur, S. C. Roth, National Institute of Standards and Technology

*Present in a joint session.
W23—General Topics II

Melt Flow Repeatability (349) ... 506
M. Shade, W. Gladin, Ashland Chemical Company

J. Bozzelli, Injection Molding Solutions

A Procedure for Establishing Proper Filling Rate for Single or Multiple Cavities (346) ... 510
J. W. Bozzelli, Injection Molding Solutions

A. Larsen, J. McDonnell, Ashland Chemical Company

Halo Surface Defects on Injection Molded Parts (761) ... 515
B. A. Salamon, K. A. Koppi, J. Little, Dow Plastics

Benefits of Velocity Phase Profiles for Injection Molding (785) ... 520
R. G. Speight, A. J. Monaco, A. Khassapov, Moldflow International Pty. Ltd.

Post-Ejection Cooling Behavior of Injection Molded Parts (475) ... 525
J. Moller, J. Swartz, Miami University

M. Carlson, Keane, Inc.

R. Alterovitz, California Institute of Technology

Modelling of the Effects of Mould Venting on the Injection Moulding Process (654) ... 530
D. M. Gao, S. Reymond, J. F. Hetu, A. Garcia-Rejon, Industrial Materials Institute

Economic Benefits through Use of Advanced Technologies (736) ... 535
H. Offergeld, IBOS GmbH

W24—CAE I

Viscosity Pressure Dependence and Material Degradation Effects on Thinwall Mold Filling Simulation (713) ... 542
R. P. Maloney, GE Plastics

A. J. Poslinski, GE Corporate Research and Development

Material Characterization for Thin Wall Molding Simulation (613) ... 547
M. Mahishi, C-MOLD

Extensional Viscosity Modelling for Injection Molding Simulation (791) ... 552
P. Brincat, K. Talwar, Swinburne University of Technology

C. Friedl, Moldflow Pty. Ltd.

The Influence of Polymer Melt Elasticity on the Mold Filling Behavior—Experimental and Simulated Results (993) ... 557
A. Niarchos, C. G. Gogos, Stevens Institute of Technology

Three-Dimensional Simulation of Plastic Injection Molding (794) ... 562
K. Talwar, F. Costa, V. Rajapalem, L. Antanovski, C. Friedl, Moldflow Pty. Ltd.

3D Mould Filling of a Transfer Sprocket (653) ... 567
A. Garcia-Rejon, J.-F. Hétu, L. Pecora, Industrial Materials Institute

O. Khennache, Camoplast Inc.

W25—Materials II

On the PVT and Thermal Shrinkage for the Injection Molding of a Plastic Lens (435) ... 574
R.-Y. Chang, Y.-C. Hsieh, National Tsing-Hua University

C.-H. Hsu, CoreTech System Co., Ltd.

Estimating Linear Shrinkage of Semicrystalline Resins from Pressure-Volume-Temperature (PVT) Data (825) ... 579
R. M. Shay, Jr., A. J. Poslinski, GE Corporate Research & Development

Y. Fakhreddine, GE Plastics

Effect of Fiber Orientation on the Mechanical Properties of an Injection Molded Part and a Stereolithography-Insert Molded Part (845) ... 584
M. Danile, S. Mehta, R. Malloy, S. P. McCarthy, University of Massachusetts, Lowell

Melt Flow versus Shear Viscosity (347) ... 589
S. L. Silvey, A. Larsen, Ashland Chemical Company

H3—CAE II

Asymmetrical Simulation of Filling and Packing Stages of Injection Molding Process (793) ... 594
A. Bakharev, D. Astbury, Moldflow International Ltd.

Mold Filling Imbalances in Geometrically Balanced Runner Systems (939) ... 599
J. P. Beaumont, J. H. Young, M. J. Jaworski, Penn State Erie, The Behrend College

An Evaluation/Benchmarking of Software “The Molder’s Technician” (871) ... 605
K. Nguyen, Injectronics
N. R. Schott, University of Massachusetts, Lowell
Prediction of Sink Marks in Injection-Molded Plastic Parts Using a Localized Shrinkage Analysis Near a Rib (697) ... 609
L. Shi, M. Gupta, Michigan Technological University
A Shrinkage-Warpage Prediction Method for Injection-Molded Fiber-Filled Polymer Composite Parts (777) 614
X. Jin, C-MOLD
Z. Zhao, Cornell University

H4—Equipment
Why and How to Measure Injection Power (90) .. 620
L. Borregaard, Bang & Olufsen A/S
Injection Molding Machine Simulator (42) .. 624
D. C. Paulson, C. P. Paulson, Paulson Training Programs, Inc.
Advanced Valve Gate Technology for Use in Specialty Injection Molding (139) ... 631
J. Blundy, D. Reitan, J. Steele, Incoe Corporation
Rationalization of Molding Machine Intelligent Setting & Control (353) 636
A. Bernhardt, Plastics & Computer Inc.
G. Bertacchi, Plastics & Computer International s.r.l.
A. Vignale, Sandretto Metalmeccanica
A Fuzzy Logic Controller for Injection Ram Velocity (256) 641
H.-P. Tsoi, F. Gao, The Hong Kong University of Science and Technology

H16—Quality
Improving Impact Strength of Injection Molded Plates through Molding Conditions
Optimization: A Design of Experiments Approach (183) 646
J. C. Viana, P. Kearney, A. M. Cunha, University of Minho
Prediction of Injection Molded Part Quality by Neural Networks (474) 651
J. C. Moller, J. J. Rowe, Miami University
Development of a Hybrid Neural Network for Quality Control of Injection Molding (129) .. 655
T. Petrova, D. Kazmer, University of Massachusetts, Amherst
Neural Networks for Quality Prediction and Closed-Loop Quality Control in Automotive Industry (203) 660
O. Schnerr, W. Michaeli, Institute for Plastics Processing (IKV)
A Study on Quality Monitoring of Injection Molded Parts (31) 665
B.-H. Min, Dong-eui University

THERMOFORMING DIVISION

M5—Thermoforming Technology
Material Constants Identification for Thermoforming Simulation (657) 672
A. Derdouri, R. Connolly, R. Khayat, Industrial Materials Institute
E. Verron, B. Peseux, Ecole Centrale de Nantes
Experimental and Theoretical Study of the Thermoformability of Industrial Polymers (658) .. 676
D. Laroche, F. Erchiqui, Industrial Materials Institute
Rheological Studies of Commercial Thermoforming Materials (920) 681
T. Spence, D. Hylton, Clark Atlanta University
Finite Element Analysis of the Effect of Processing Conditions on Thermoforming (905) .. 690
G. J. Nam, H. W. Rhee, J. W. Lee, Sogang University

M23—Thermoforming Processing
Optimization of Processing Conditions in Thermoforming (544) 696
C. M. Bordonaro, C. E. Scott, Massachusetts Institute of Technology
T. L. Virkler, P. A. Galante, B. Pineo, Bayer Corporation
Optimisation of the Thermoforming Process: A Few Industrial Examples (795) 701
T. M. Marchal, N. P. Clemeur, Polyflow S.A.
A. K. Agarwal, Flow Consulting India
ANTEC '98 / xv
G. Schmidt, W. Michaeli, Institute of Plastics Processing (IKV)
Process Modelling and Optimization for the Blow Moulding of a Fuel Tank (173) .. 774
D. Laroche, K. K. Kabanemi, L. Pecora, R. W. DiRaddo, Industrial Materials Institute
L. Savoni, A. Puempel, Kautex-Textron
Method for Effective Color Change in Extrusion Blow Molding Accumulator Heads (356) 779
J. S. Hsu, D. Reber, Cincinnati Milacron

T29—Extrusion Blow Molding/Injection Blow Molding

Blow Moulding of an Industrial Part: A Comparison between Experiments and Simulation (52) 784
B. Debbaud, O. Homerin, A. Goublomme, Polyflow S.A.
N. Jivraj, Dow Benelux N.V.
An Experimental Study on Cooling Time Reduction in Extrusion Blow Molding (830) 789
T. Kakemura, Toppan Printing Co., Ltd.
N. R. Schott, University of Massachusetts, Lowell
Optimization of Material Performance by Control of Part Solidification and Microstructure (172) 795
R. W. DiRaddo, Industrial Materials Institute
M. J. Mignacca, Pétromont, Inc.
Reduced Weight & Improved Cycle Times for Injection Blown Containers (897) 800
D. Rainville, R. J. Abramo
The Effect of Stretch and Heat Transfer on the Thermo-Mechanical Properties of PET Bottles (332) 803
A. Siberman, M. Omer, A. Ophir, S. Kenig, Israel Plastics & Rubber Center

W9—Injection Blow Molding

*Fundamentals of PET Stretch Blow Molded Containers (957) ... 810
R. J. Caldicott, DevTech Labs, Inc.
*Methods for the Measurement of Crystallinity of Preforms and Bottles Made from PET (940) 816
Z. Bashir, I. Al-Aloush, I. Al-Raqibah, M. Ibrahim, SABIC R&D
*Modeling and Optimization of Barrier Properties for Stretch—Blow Molded Bottles (781) 821
K. Hartwig, Krupp Corpoplast Maschinenbau GmbH
*Designing PET Preform Injection Molding Processes for the Lightest Practical Weight Offers Opportunities for Improved Productivity and Quality (797) .. 826
S. W. Zagarola, Terra Firma International, Ltd.
*Index PET Preform System—Molding Advantages and Bottle Performance Evaluation (578) 831
K. Engberg, M. Koch, Husky Injection Molding Systems Inc.

MOLD MAKING/MOLD DESIGN

M36—Mold Making and Mold Design/Product Design and Development

*Tracking the Documentation of Mold Tooling (2037) ... 3350
B. A. Bergeron, University of Massachusetts, Lowell
*Student’s Assessment of Data Sheets (2030) ... 3353
C. M. Shaffer, University of Massachusetts, Lowell
*Using Computer Software Analysis with Gas Assist Injection Molded Parts (2064) 3355
J. W. Hotchkiss, Penn State Erie, The Behrend College
*The Use of Gas Assist in the Redesign of a Plastic Strap Wrench (2044) .. 3360
C. R. Dross, Penn State Erie, The Behrend College
*Thin and Thick Cross-Sectional Walls for Foamed Polyolefin Parts (2045) .. 3367
J. Kanoza, D. Brosey, Penn State Erie, The Behrend College
*Study of Adhesive Strength of Metal Backing to Stereolithography Molds (2061) 3371
C. D. Baker, C. A. Cheatle, Penn State Erie, The Behrend College
*Flow Instabilities in Thin-Wall Injection Molding of Thermoplastic Polyurethane (2031) 3373
C. D. Smialek, C. L. Simpson, University of Massachusetts, Lowell

T10—Copper Alloys in Molds

Getting Heat Out of the Mold Where Water Won’t Go (493) ... 836
P. Engelmann, E. Dawkins, Western Michigan University
R. Dealey, Dealey’s Mold Engineering

*Present in a joint session.
M. Monfore, Ralston Foods
Cooling Prediction of Non-Watered Copper and Steel Mold Cores (494) .. 841
J. Shoemaker, C. Kietzmann, Moldflow Pty. Ltd.
A Abrasion Resistance Testing of Copper Alloys, Moldmax and Protherm,
in Injection Molding (626) .. 846
A. Guha, S. Smyers, Brush Wellman Inc.

W12—Mold Design

Advanced Cooling System for Closure Molds (352) .. 852
A. Bernhardt, Plastics & Computer Inc.
D. Vettor, Mold-Masters Ltd.
Effects of Electrical Discharge Machining on the Surface Characteristics of
Mold Materials (986) .. 857
P. Miller, Uddeholm
A. Guha, Brush Wellman, Inc.
Application of Case-Based Technology in Mould Design System (107) .. 864
W. Hu, N. Singh, Wayne State University
D. Thevalingam, Swinburne University of Technology
C. Friedl, Moldflow International Pty. Ltd.
Economic Design of Injection Molded Parts Using DFM Guidelines—A Review of Two
Methods for Tooling Cost Estimation (133) .. 869
A. Fagade, D. Kazmer, University of Massachusetts, Amherst
Introducing a New Multiple Cavity Molding System Design for Small and Medium Parts (484) 874
P. R. Catalanotti, Roehr Tool Corporation

W31—Stereolithography and CAE

Post Build Cure of Stereolithography Polymers for Injection Molds (267) .. 880
B. Blair, J. Colton, Georgia Institute of Technology
Polishing of Stereolithography Injection Molds (268) .. 884
B. Blair, J. Colton, Georgia Institute of Technology
Analysis of Metal Coating Effects on Stereolithography Tooling for Injection Molding (843) 888
D. T. Burns, R. A. Malloy, S. P. McCarthy, University of Massachusetts, Lowell
Optimizing Part and Mold Design Using CAE Technology (280) .. 893
V. Travaglini, Tradesco Mold Ltd.
From Part Design to Product—One Case History (281) .. 898
J. Golmanavich, Lucent Technologies
Minimize Part Warpage by Integrated CAE Technology (432) ... 903
R.-Y. Chang, Y.-C. Chen, National Tsing-Hua University
C.-H. Hsu, M.-H. Tsai, CoreTech System Co., Ltd.

APPLIED RHEOLOGY DIVISION

M33—Novel Methods for Rheological Measurement

A High Pressure Melt Rheometer and Some Results for a LLDPE (594) .. 910
F. Koran, J. M. Dealy, McGill University
Novel Techniques for the Measurement of Die Swell in Polymer Melts (47) .. 915
K. J. Christodoulou, A. K. Wood, University of Manchester and UMIST
N. Sombatsompop, King Mongkut's Institute of Technology Thonburi (KMUTT)
Infra Red Temperature Assessments in Polymer Melt Flows (311). .. 920
A. Key, A. J. Dawson, R. M. Rose, P. D. Coates, University of Bradford
Improving the Accuracy of On-Line Melt Index Measurements (260) .. 924
B. I. Nelson, Goettfert
On-Line Rheology with Extended Spectrum (142) .. 929
A. Goettfert, E.-O. Reher
What's New in Capillary Rheometry? (140) .. 934
A. Goettfert, E.-O. Reher
In-situ Monitoring of a Polymer Cure Using Dynamic Rheometry and
Raman Spectroscopy (714). .. 939
J. Rose, M. T. Shaw, University of Connecticut
Measurement and Prediction of the First Normal Stress Difference and Creep Compliance of Polypropylene Resins by Using the Wagner Model (517) .. 945
J. Bonilla-Rios, *ITESM*
R. Darby, *Texas A&M University*
J. M. Sosa, *Fina Oil & Chemical Co.*

T36—Melt Fracture and Extensional Rheology

A New Processing Additive Eliminating Surface and Gross Melt Fracture in the Extrusion of Polyolefins and Fluoropolymers (676) .. 952
E. E. Rosenbaum, S. G. Hatzikiriakos, *The University of British Columbia*

On the Melt Fracture of Polypropylene (300) ... 957
R. L. Sammler, C. P. Bosnyak, *The Dow Chemical Company*
R. J. Koopmans, M. A. Mangnus, *Dow Benelux N.V.*

Flow Visualisation for Extensional Viscosity Assessment (312) 962
C. Nakason, M. Kamala, M. Martyn, P. D. Coates, *University of Bradford*

Interfacial Reaction versus Area Generation Rate via Extensional Rheometry (759) 967
T. Saito, C. W. Macosko, *University of Minnesota*

Polymer Melts and Concentrated Solutions Extensional Viscosity (542) 972
O. Romanoschi, J. R. Collier, S. Petrovan, I. Negulescu, *Louisiana State University*

Degradation of Monodisperse Polystyrene in a Fast Transient Extensional Flow (737) .. 977
J. D. Clay, K. W. Koelling, *The Ohio State University*

Extensional and Shear Rheology of Metallocene-Catalyzed Polyethylenes (185) 981
S. E. Bin Wadud, D. G. Baird, *Virginia Polytechnic Institute and State University*

Pressure Effect on Extensional Viscosity (530) ... 985
J. H. Christensen, E. M. Kjær, *Technical University of Denmark*

W30—Rheology in Plastics Characterization

Rheology and Constitutive Equations for ABS Polymer Melts (543) 2128
S. E. Solovyov, C. E. Scott, *Massachusetts Institute of Technology*

T. L. Virkler, *Bayer Corporation*

Forced Reptation Rheology Model (461) .. 2133
K. A. Koppi, B. J. Meister, M. A. Spalding, *The Dow Chemical Company*

A Hybrid Nonlinear Constitutive Model: Comparisons with Multiple Step Data for a Polyurethane Rubber (321) .. 2138
V. Rouiller, G. B. McKenna, *National Institute of Standards and Technology*

Temperature Effects on the Shear-Thickening and Flow-Induced Structure Formation in Semidilute Solutions of Gently-Solubilized Starches (74) 2144
C. J. Carriere, A. R. Loffredo, *United States Department of Agriculture*

Rheology and Processing Experience of New Metallocene Polyolefins (738) .. 2148

Temperature Shift Factors for the Segmental Relaxation of Polycarbonate Below the Glass Transition (988) .. 2152
P. A. O’Connell, G. B. McKenna, *National Institute of Standards and Technology*

Melt Viscoelasticity of Novel Glassy Phosphate Polymers (307) 2158
J. U. Otaigbe, *Iowa State University*

R. L. Sammler, *The Dow Chemical Company*

A Nonlinear Fluid Standard Reference Material: Progress Report (221) 2162
C. R. Schultheisz, G. B. McKenna, *National Institute of Standards and Technology*

W37—Rheology of Novel Plastics

Dynamic Melt Rheometry Used to Study Degradation of Metallocene Polyethylene (669) 992
S. H. Wasserman, G. N. Foster, D. J. Yacka, *Univation Technologies*

Rheological Analysis as a Tool to Predict Quality in Powder Injection Molding (46) .. 997
D. M. Bigg, R. G. Barry

Changes in the Viscosity, Relaxation Spectra and the Molecular Weight Distribution of Polypropylene Resins Due to the Addition of Peroxide during Extrusion (516) .. 1001

Present in a joint session.
JOINING OF PLASTICS AND COMPOSITES DIVISION

M15—New Processes

Laser Transmission Welding of Thermoplastics: Analysis of the Heating Phase
H. Potente, J. Korte, F. Becker, University of Paderborn
1022

Infrared Welding of Thermoplastics: Colored Pigments and Carbon Black Levels
R. A. Grimm, H. Yeh, Edison Welding Institute
1026

Infrared Welding of Thermoplastics: Characterization of Transmission Behavior
of Eleven Thermoplastics
H. J. Yeh, R. A. Grimm, Edison Welding Institute
1030

Analysis of Heat Generation of Conductive Polymer in Single Mode Microwave Welding
C.-Y. Wu, R. Lee, A. Benatar, The Ohio State University
1034

T16—Plastic Welding I

An “Expert” System for Ultrasonic Welding of Plastics
D. A. Grewell, Branson Ultrasonics Corporation
1040

Assessment of Geometries for Determining Strengths of Thermoplastic
Vibration Welds
V. K. Stokes, GE Corporate Research and Development
1045

Measurement of Dynamic Moduli of Low Modulus Polymers
X. Ma, Automated Analysis Corporation
1050

Central Composite Design—An Aid to Weld Optimization
I. D. Froment, TWI
1055

T37—Plastic Welding II

Welding Behaviour of Filled and Reinforced Thermoplastics with Hot Plate Welding
H. Potente, A. Brübel, University of Paderborn
1062

Structure Property Relationships in Polyetheretherketone Hot Plate Welds
S. M. Stevens, TWI
1067

Cross-Linked Polyethylene Can Be Welded
Ch. Bonten, University of Essen
1072

Experimental Study on Hot-Air Cold Staking of PC, PC/ABS and Acetal Samples
H. J. Yeh, Edison Welding Institute
1078

C. L. Schott, J. B. Park, Ford Motor Company

W18—Adhesives

Accelerated Curing of Epoxy Paste Adhesives for Repair of Composites
S. H. McKnight, B. K. Fink, U.S. Army Research Laboratory
1084

Feasibility Study of Rapid Curing of Structural Adhesives
K.-M. Kwan, K. Cheng, A. Benatar, The Ohio State University
1089

Heat-Activated Joining Technology for Composite to Alloy Piping Systems
M. A. Stubblefield, Southern University
1095

C. Yang, Wichita State University
S.-S. Pang, Louisiana State University
Rapid Curing of Polyurethane Adhesive by Ultrasonic Vibration (688) .. 1100
K.-M. Kwan, C. Y. Wu, A. Benatar, The Ohio State University

W34—Composites and Joining

*Effects of a Low Modulus Interphase on the Single-Fiber Fragmentation of Carbon/Epoxy Composites (817) .. 2346
M. Tanoglu, G. R. Palmese, S. H. Mc Knight, J. W. Gillespie, Jr., University of Delaware

*Monitoring Composites with Optical Fiber Sensor Systems (953) .. 2351
R. S. Parnas, J. P. Dunkers, R. A. Neff, National Institute of Standards and Technology

*Control of Warpage and Residual Stresses during the Automated Tow Placement Process (818) .. 2356
J. Tierney, J. W. Gillespie, Jr., University of Delaware

*Mechanical Properties of Long Fiber Reinforced Phenolic Composites (108) .. 2361
J. Wolfrum, G. W. Ehrenstein, University Erlangen-Nuremberg

*A Predictive Neural Network Controller for the Thermoplastic Composite Tow-Placement System (819) .. 2366
D. Heider, M. J. Piovoso, J. W. Gillespie, Jr., University of Delaware

ROTATIONAL MOLDING DIVISION

M16—Rotational Molding I

Reducing Cycle Times in Rotational Moulding—A Challenge (981) .. 1108
R. J. Crawford, The Queen's University of Belfast
Polymer Sintering and Its Role in Rotational Molding (181) .. 1112
C. T. Bellehumeur, University of Calgary
J. Vlachopoulos, McMaster University
Axisymmetric Finite Element Models of Rotational Molding (863) .. 1116
L. G. Olson, G. Gogos, V. Pasham, X. Liu, University of Nebraska
Roto-Blow Moulding, a Rotational Moulding Hybrid (984) .. 1121
A. Spence, Centro Incorporated

M35—Rotational Molding II

Electric Infrared versus Gas-Fired Rotational Molding (691) .. 1128
E. Ahlgren, D. Tuel, Jr., ShoreMaster, Inc.
W. Goodman, EPRI/CMF
Cycle Time Predictions for the Rotational Molding Process with and without Mold/Part Separation (962) .. 1133
G. Gogos, X. Liu, L. G. Olson, University of Nebraska-Lincoln
Relationship between the Microstructure and the Properties of Rotationally Moulded Plastics (982) .. 1137
M. C. Cramez, M. J. Oliveira, Universidade do Minho
R. J. Crawford, Queen's University of Belfast
Study of the Processability of Commercial PVC Plastisols by Rheology (98) .. 1142
J. C. Garcia-Quesada, A. Marcilla, M. Beltrán, Universidad de Alicante

T17—Rotational Molding III

Guidelines for the Rotational Moulding of Liquid Polymers (176) .. 1148
E. Harkin-Jones, R. J. Crawford, The Queen's University of Belfast
The Grinding of Polyethylene Powders for Use in Rotational Molding (25) .. 1152
J. McDaid, R. J. Crawford, The Queen's University of Belfast
Experimental Investigation of the Warpages in Rotationally Molded Parts (572) .. 1156
S.-J. Liu, C.-Y. Ho, Chang Gung University
An Experimental Study of Foamed Polyethylene in Rotational Molding (573) .. 1161
S.-J. Liu, C.-H. Tsai, Chang Gung University

*Present in a joint session.