19th Meeting & Symposium
November 17–12, 1997
Historic Boston Park Plaza Hotel
Boston, Massachusetts
Table of Contents

The AMTA

AMTA 1997 Officers

Exhibitors, Future Meetings & Hosts

1997 Distinguished Achievement Award (Dr. Doren Hess)

Dr. Doren Hess Biography

Session I: Antenna Measurements

A Technique for Multiple Frequency Measurements on the Ground Reflection Range
John S. DeRosa and Daniel E. Warren
Rome Laboratory/ERSE, Rome, NY

Implementation and Results of a Time-Domain Gating System for a Far-Field Range
Andrew M. Predoehl* and Warren L. Stutzman**
* Watkins-Johnson Co., Gaithersburg, MD
Virginia Polytechnic Inst. and State University, Blacksburg, VA

Millimetre-Wave Antenna Testing for Production
D.A. McNamara*, D.J. Janse van Rensburg**, and P. Cowles*
* COM DEV Ltd., Ontario, Canada
** Nearfield Systems Inc., Carson, CA

Measurement Considerations for Antenna Pattern Accuracy
John Swanstrom
Hewlett-Packard Company, Santa Rosa, CA

Understanding Open Area Test Site Performance
Peter McNair
National Physical Laboratory, Middlesex, U.K.

An Antenna Pattern Measurement Technique Using Wideband Channel Profiles to Resolve Multipath Signal Components
Student Paper
William G. Newhall and Theodore S. Rappaport
Virginia Tech, Blacksburg, VA

G/T Measurement of Small Antennas
R.B. Dybdal
The Aerospace Corporation, Los Angeles, CA
Session II: Novel Antennas and Material Designs

Design and Performance of the Absorber Fence for WL Advanced Compact Range Facility
* The Ohio State University, ElectroScience Laboratory, Columbus, OH
** Wright Laboratories, Wright Patterson Air Force Base, OH

Design and Testing of New Curved Pyramidal Absorber
I.J. Gupta*, W. D. Burnside*, C.W. Chuang*, B.M. Kent**, and M.C. Gelreath***
* The Ohio State University, ElectroScience Laboratory, Columbus, OH
** Wright Laboratories, Wright Patterson Air Force Base, OH
*** NASA Langley Research Center, Hampton, VA

A Wide Band Feed for a Virtual Vertex Reflector
W. D. Burnside*, A.J. Susanto*, and Edward A. Urbanik**
* The Ohio State University, ElectroScience Laboratory, Columbus, OH
** Sanders, A Lockheed Martin Company, Nashua, NH

A Planar Slot Spiral for Multi-Function Communications Apertures
Student Paper
M. W. Nurnberger and J.L. Volakis
University of Michigan, Ann Arbor, MI

A New Ground Penetrating Radar Antenna Design - The Horn-Fed Bowtie (HFB)
Student Paper
Chi-Chih Chen
The Ohio State University, ElectroScience Laboratory, Columbus, OH

Radio Frequency (RF) Visual Detection Concept
Dr. Al Torres
Mission Research Corporation (MRC), Dayton, OH
<table>
<thead>
<tr>
<th>Session III: Near-Field Measurement Techniques I</th>
</tr>
</thead>
</table>
| Aperture Sampling Effects in Planar Near-Field Measurements | 79
| Michael H. Francis* and Tom Milligan** |
| * National Institute of Standards and Technology (NIST), Boulder, CO |
| ** Lockheed Martin, Littleton, CO |
| Limitations of Near-Field Probe Position Error Correction Techniques | 84
| David P. Woollen*, Kenneth G. Thompson*, and David R. St. John** |
| * Naval Surface Warfare Center - Crane Division, Crane, IN |
| ** Technology Service Corp., Bloomington, IN |
| The Quadrille, An Error Reduction Procedure for Planar Near Field Measurements | 90
| L. J. Kaplan, W. G. Scott, and R. E. Wilson |
| Space Systems/ Loral, Palo Alto, CA |
| The Development of a Near-field Data Window Function for Measuring Standard Gain Horns | 96
| Paul R. Rousseau |
| The Aerospace Corporation, El Segundo, CA |
| The Calibration of Probes for Near-Field Scanning at NPL | 102
| David Gentle |
| National Physical Laboratory, Middlesex, U.K. |
| A Technique to Reduce the Scan Length in Near-Field Antenna Measurements | 108
| I.J. Gupta*, W.D. Burnside*, and R. McArthur** |
| * The Ohio State University, ElectroScience Laboratory, Columbus, OH |
| ** Sinclair Technologies Inc., Tonawanda, NY |
| Cylindrical Near-field Measurement of L-Band Antennas | 113
| John Chenoweth* and Terrance Speicher** |
| * Andrew Corporation, Addison, IL |
| ** Nearfield Systems Inc., Carson, CA |
| Near-field data processing using MATLAB version 5.0 | 118
| W.P.M.N. Keizer |
| TNO Physics and Electronics Laboratory, The Hague, Netherlands |
Session IV: Near-Field Measurement Techniques II

Microwave Antenna Far-Field Patterns Determined From Infrared Holograms
* National Institute of Standards and Technology (NIST), Boulder, CO
** SUN Microsystems, Sunnyvale, CA
*** University of Colorado, Colorado Springs, CO
**** Rome Laboratories, Rome, NY
***** Computational Optics, Boulder, CO

The Alignment of a Spherical Near-Field Rotator Using Electrical Measurements
Allen C. Newell and Greg Hindman
Nearfield Systems Inc., Carson, CA

Errors Analysis of Near-Field Measurement
Guy Seguin and Tony Pellerin
Canadian Space Agency, St-Hubert, Quebec, Canada

Simulation of Planar Near-Field Errors
Martin Alm
Ericsson Microwave Systems, Molndal, Sweden

Range Validation Testing of a Planar Near-Field Range Facility at Hughes Space and Communications Co.
Jeff Way
Hughes Space and Communications Company, Los Angeles, CA

A Turnkey Near-Field Measurement System for Pulse Mode Applications
David S. Fooshe*, Kenneth Thompson**, and Matt Harvey***
* Nearfield Systems Inc., Carson, CA
** Naval Surface Warfare Center - Crane Division, Crane, IN
*** Technical Service Corp., Bloomington, IN
Session V: Compact and Spherical Range Technology

A New Approach of Edge Treatment for Compact Range Reflectors
M. Sameh Mahmoud, Teh-Hong Lee, and Walter D. Burnside
* The Ohio State University, ElectroScience Laboratory, Columbus, OH

A 119 GHz CATR Based on a 2.4 m Hologram
* Helsinki University of Technology, Finland
** Millimetre Wave Laboratory of Finland, Finland

Range-Field Plane Wave Model Determined From Spherical Probing Data
Student Paper
Daniel A. Leatherwood and Edward B. Joy
Georgia Institute of Technology, Atlanta, GA

Performances of the Mistral Antenna Measurement Compact Range at Intespace
Pascal Meisse*, Remi Berge*, Jacques Barbier**, and Jacques Descoins**
* Intespace, Toulouse, France
** CNES, Toulouse, France

Dual Shaped Reflector Feed System Suppressing Cross Polarized Components for Compact Antenna Test Range
Mikio Takabayashi, Hiroyuki Deguchi, and Norio Miyahara
Mitsubishi Electric Corporation, Kanagawa, Japan

Mechanical Alignment Error Study of Large Sectionalized Compact Range Reflectors
C.A. Rose, Thomas W. Miller, and Dave Smith
Scientific-Atlanta, Inc., Atlanta, GA

Satellite Antenna Pointing System Verification Using the ESA Compact Payload Test Range
S. Badessi*, S. Gerosa**, J. Lemanczyk*, and K. Pontoppidan***
* ESTEC, European Space Agency, Noordwijk, The Netherlands
** Alenia Aerospazio, Rome, Italy
*** TICRA, Copenhagen, Denmark

Plane Wave, Pattern Subtraction, Range Compensation for Spherical Surface Antenna Pattern Measurements
Student Paper
Daniel A. Leatherwood and Edward B. Joy
Georgia Institute of Technology, Atlanta, GA
Session VI: Mobile Communication Systems

A Novel Cellular/PCS Basestation Antenna Measurement System
W.D. Burnside*, K. Sickles*, C. Chen*, and R. McArthur**
* The Ohio State University, ElectroScience Laboratory, Columbus, OH
** Sinclair Technologies Inc., Tonawanda, NY

Intelligent Cruise Control Radar Development
Eric Walton, Frank Paynter, and David Farkas
The Ohio State University, ElectroScience Laboratory, Columbus, OH

Automated Highway Radar Guidance Antenna and System Testing Results
Jonathan D. Young and David Farkas
The Ohio State University, ElectroScience Laboratory, Columbus, OH

Experimental Measurement Techniques for Automotive Antennas
Student Paper
Ramzi Abou-Jaoude* and Eric K. Walton**
* Wiltron Company, Morgan Hill, CA
** The Ohio State University, ElectroScience Laboratory, Columbus, OH

Investigation on the Influence of the User on the Mobile Phone in the German E-Plus-Network
Matthias Schneider*, Martin Gehrt*, and Jurgen Wicke
Institute for Mobile and Satellite Communications GmbH, Kamp-Lintfort, Germany
E-Plus Mobilfunk GmbH, Dusseldorf, Germany
Session VII: Near-Field Measurement Techniques III 233

Phase-Retrieval Using Non Redundant Sampling Representations
O. M. Bucci, G. D'Elia, and M. D. Migliore
Universitá di Napoli "Federico II", Napoli, Italy

Near-Field Measurement Deconvolution 240
G. Seguin* and T.J.F Pavlasek**
* Canadian Space Agency, St-Hubert, Quebec, Canada
** McGill University, Montreal, Canada

An Efficient Uniform Geometrical Theory of Diffraction Based Far Field Transformation of Spherical Near Field Antenna Measurement Data 244
* Korea Advanced Institute of Science and Technology
** The Ohio State University, ElectroScience Laboratory, Columbus, OH

Diagnostic Phase-Space Representation in Planar Near-Field Antenna Measurements 249
Ali Moghaddar
Aeroflex-Lintek Corp., Powell, OH

Far-Field Accuracy VS Sampling Parameters of a Linear Array 255
Guy Seguin and Eric Gloutnay
Canadian Space Agency, St-Hubert, Quebec, Canada
Session VIII: Electromagnetic Measurements

Analysis and Optimization of Anechoic Chambers Equipped with Ferrite and Hybrid Absorbers Using FIT-FD
J. Haala and W. Wiesbeck
Universitat Karlsruhe, Karlsruhe, Germany

Minimally Perturbing Photonic Broadband EM Field Sensor System with Environmental Compensation
* RAMAR Corporation, Northborough, MA
** Phillips Laboratory (PL/WSM), Kirtland AFB, NM

A Frequency Domain Investigation of Mechanical Mode Stirring in a Reverberation Chamber
Student Paper
Stephen A. Scearce and Dr. Charles F. Bunting
Old Dominion University, Norfolk, VA

W-band Free Space Permittivity Measurement System for Candidate Radome Materials
D.T. Fratick* and R.L. Cravey**
* Lockheed-Martin Engineering & Sciences Company, Hampton, VA
** NASA Langley Research Center, Hampton, VA

The Use of Graphical Programming Environments for Antenna Measurement and Test
George DiNardo*, Hany Nasr*, and Shantnu Mishra**
* Larus Technologies Corporation, Ontario, Canada
** Canadian Space Agency, Ontario, Canada
Session IX: Promoting and Developing Measurement and Processing Standards

Brian M. Kent* and Lorant A. Muth**
* Wright Laboratory, Wright Patterson Air Force Base, OH
** National Institute of Standards and Technology (NIST), Boulder, CO

Interlaboratory Comparisons in Radar Cross Section Measurement Assurance
Lorant A. Muth*, Ronald C. Wittmann*, and Brian M. Kent**
* National Institute of Standards and Technology (NIST), Boulder, CO
** Wright Laboratory, Wright Patterson Air Force Base, OH

Radar Image Normalization and Interpretation
J. Paul Skinner*, Brian M. Kent**, Ronald C. Wittmann***, Dean L. Mensa****, and Dennis Andersh*****
* Wright Patterson Air Force Base, OH
** Wright Laboratories, Wright Patterson Air Force Base, OH
*** National Institute of Standards and Technology (NIST), Boulder, CO
**** Consultant, formerly with the U.S. Naval Weapons Center, Pt. Mugu, CA
***** Demaco Inc., Champaign, IL

NetCDF - A File Format Suitable for Antenna Measurements
Mikael Dich*, Jonas Karlsson**, and Per Malmborg**
* Technical University of Denmark, Lyngby, Denmark
** Saab Ericsson Space AB, Gothenburg, Sweden
*** Ericsson Microwave Systems AB, Molndal, Sweden

Bistatic Cross-Polarization Calibration
Randy J. Jost and Richard F. Fahlsing
Johnson Controls World Services, Holloman AFB, NM

The Squat Cylinder and Modified Bicone Primary Static RCS Range Calibration Standards
Brian M. Kent* and William D. Wood Jr**.
* Wright Laboratory, Wright Patterson Air Force Base, OH
** Wright Patterson Air Force Base, OH

Interlaboratory Comparisons in Polarimetric Radar Cross Section Calibrations
Lorant A. Muth*, William Parnell**, Michael Husar***, Donald Hilliard****, and Brian M. Kent*****
* National Institute of Standards and Technology (NIST), Boulder, CO
** MMW Systems Division, Eglin AFB, FL
*** Air Force Development Test Center, RATSCAT, Holloman AFB, NM
**** Radar Reflectivity Laboratory, NAWC-WD, Point Mugu, CA
***** Wright Laboratories, Wright Patterson Air Force Base, OH
Session X: Radar Imaging

A Graphical User Interface for the APT/IMGMANIP Toolbox
Christopher J. Roussi, Joseph Garbarino, Anne-Marie Lentz, Kevin Quinlan, Brian White, and Ivan J. LaHaie
ERIM International, Inc., Ann Arbor, MI

Application of a MoM-Based Network Model NFFFT to Measured Conesphere Data
Keith R. Aberegg and Mark A. Ricoy
ERIM International, Inc., Ann Arbor, MI

Application of an Image-Based Near-Field to Far-Field Transformation to Measured Data
Edward I. LeBaron and Keith R. Aberegg
ERIM International, Inc., Ann Arbor, MI

Improved Validation of IER Results
J.C. Davis and L. Sheffield
Information Systems and Research (ISAR), Inc., Fairfax, VA

I4D: A new approach to RCS imaging analysis
J.C. Castelli and G. Bobillot
ONERA DES, Cedex, France

RCS MEASUREMENTS ON TARGET FEATURES
August W. Rihaczek and Stephen J. Hershkowitz
MARK Resources, Inc., Torrance, CA
Innovative Mechanical Designs for Scanners
John Demas and Terrance Speicher
Nearfield Systems Inc., Carson, CA

Implementation of a Spherical Near-Field Measurement System in Mainland China
Greg Hindman*, Hanjian**, and Wei-Bin Ye***
* Nearfield Systems Inc., Carson, CA
** Southwest China Research Inst. of Electronic Equipment, Chengdu, China
*** Hewlett Packard, Chegdu, China

A Large Combination Horizontal and Vertical Near Field Measurement Facility for Satellite Antenna Characterization
John Demas
Nearfield Systems Inc., Carson, CA

Rocket Motor Plume Measurement Facility
William W. Harrington
Sverdrup Technology, Inc., Ridgecrest, CA

Practical Considerations for Making Pulsed Antenna Measurements
Clive Barnett and Dan Dunn
Hewlett-Packard Company, Santa Rosa, CA

Applications of A-MST Probe Arrays to Fast Diagnostic Testing of Anechoic Chambers and Microwave Antennas
* SATIMO Inc., Acworth, GA
** SATIMO (SARL), Les Ulis, France
*** CNES, Toulouse, France
**** Georgia Technology Research Institute (GTRI), Atlanta, GA
Session XII: European Space Agency

Implementation and Operation of the Time Domain Antenna Measurement (ATDM) Technique
Rene de Jong, M. Hajian, and L.P. Ligthart
Delft University of Technology, Delft, The Netherlands

Compensation for Unknown Position-Induced Phase Errors in a Driveby Imaging Radar
Peter N.R. Stoyle
Defence & Evaluation Research Agency (DERA), Malvern, U.K.

Sensor Measurements up to 200 GHz in the Compensated Compact Range with Broadband Transmit and Receive Modules
Jurgen Habersack, Willi Lindemer, and Hans-Jurgen Steiner
Daimler-Benz Aerospace (DASA), Munich, Germany

Holographic Near-Field/Far-Field for TeraHertz Antenna Testing
G. Junkin, T. Huang, and J.C. Bennett
The University of Sheffield, Sheffield, U.K.

Alignment Errors and Standard Gain Horn Calibrations
Mikael Dich and Hans Erik Gram
Danish Technical University, Lyngby, Denmark

Application of RCS Reference Targets for Frequencies Above 30 GHz
* Eindhoven University of Technology, Eindhoven, The Netherlands
** March Microwave Systems B.V., Nuenen, The Netherlands
*** European Space Agency, Noordwijk, The Netherlands

Polarimetric calibration of anisotropic materials measurements
Laurent Priou and Virginie Saavedra
CEA/CESTA - DEV/SPUR/GEMS, Le Barp, France
Session XIII: RCS Data Processing

Three-Dimensional Imaging Using Ambiguity Free Interferometry
Klaus Schmitt and Werner Wiesbeck
University of Karlsruhe, Karlsruhe, Germany

Applications of the Fractional Fourier Transform in Radar Imaging
Aharon Blank and Zeev Zalevsky
IAF-IDF, Kiryat Ono, Israel

Feasibility of Automated Analysis of Diagnostic Radar Images
Gerald G. Fliss, James P. Steinbacher, Susan I. Stokely, and Robert C. Vogt
ERIM International, Inc., Ann Arbor, MI

Shipboard Diagnostic Measurements with Extended Imaging
John Piri*, Nancy Cheadle*, Robert C. Hicks, Jr.**, Michael Sanders***, and John Ashton***
* Naval Air Warfare Center (NAWCPNS-CL), China Lake, CA
** Modern Technology Solutions, Inc., Alamogordo, NM
*** Sensor Concepts, Inc., Livermore, CA

Quasi 3D Imaging on a Ground Plane RCS Range
Jan O. Melin
Melin Radar AB, Linkoping, Sweden

Effect of Data Coherence on a Waterline Bistatic Near Field to Far Field Transform
Mark A. Ricoy and Edward I. LeBaron
ERIM International, Inc., Ann Arbor, MI

Study of a Corner Reflector of Finite Thickness
P. S. P. Wei
Boeing Defense & Space Group, Seattle, Washington

High Resolution Filtering of RCS Measurements
Sylvain Morvan and Guy Poulalion
CEA/CESTA, DEV/SFUR/GMMS, Le Barp, France
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutual Coupling Measurements of a Synthetic Aperture Ka-Band Waveguide Array</td>
<td>491</td>
</tr>
<tr>
<td>D.T. Fralick* and M.C. Bailey**</td>
<td></td>
</tr>
<tr>
<td>* Lockheed-Martin Engineering and Sciences Company, Hampton, VA</td>
<td></td>
</tr>
<tr>
<td>** NASA Langley Research Center, Hampton, VA</td>
<td></td>
</tr>
<tr>
<td>Array Diagnosis of Element Failure From Non Redundant Near-Field Measurement</td>
<td>495</td>
</tr>
<tr>
<td>O. M. Bucci, M. D. Migliore, and G. Panariello</td>
<td></td>
</tr>
<tr>
<td>Università di Napoli "Federico II", Napoli, Italy</td>
<td></td>
</tr>
<tr>
<td>Experiences with Near Field Measurements of the Active Phased Array Radar PHARUS</td>
<td>501</td>
</tr>
<tr>
<td>Maurice H. Paquay</td>
<td></td>
</tr>
<tr>
<td>TNO Physics and Electronics Laboratory, Den Haag, The Netherlands</td>
<td></td>
</tr>
<tr>
<td>A System for Testing Multiple Parameters of Active Aperture Antenna Subarrays</td>
<td>507</td>
</tr>
<tr>
<td>A. Renee Koster, Rebecca R. Kaffezakis, and Tom Thomas</td>
<td></td>
</tr>
<tr>
<td>Scientific-Atlanta, Inc., Atlanta, GA</td>
<td></td>
</tr>
<tr>
<td>Implementing an Expert System to Analyze Phase-Array Antenna Range and Diagnostic Data</td>
<td>512</td>
</tr>
<tr>
<td>Du Zhang*, Joseph Friedel*, Vo Lee*, and Robert Keyser**</td>
<td></td>
</tr>
<tr>
<td>* California State University, Sacramento, CA</td>
<td></td>
</tr>
<tr>
<td>** SM-ALC, McClellan AFB, CA</td>
<td></td>
</tr>
</tbody>
</table>
Session XV: RCS Measurement Techniques

An Analysis of Radar Measurement System Stability Factors
John Matis and Kenneth Farkas
The Boeing Company, Palmdale, CA

Principles of a New Compact Range Technique for the Submillimeter Wave Region
V.K. Kiseliov and T.M. Kushta
Ukrainian National Academy of Sciences, Kharkov, Ukraine

A Combined Microwave/Millimeter Wave RCS Compact Range Based Measurement Facility
J.F. Aubin and C.J. Arnold
Orbit/FR Inc., Horsham, PA

A Compact Range for Radar System Testing
Virginia V. Jory*, Dylan Oxford*, Dean M. Breiner**, and Bill Richardson**
* Scientific-Atlanta, Inc., Atlanta, GA
** Boeing North American, Seattle, Washington

An Integrated Antenna/RCS/EMI Compact Range Based Measurement Facility
* Orbit/FR Inc., Horsham, PA
** Naval Undersea Warfare Center, Newport, RI

Indoor RCS Measurement Capability at VHF in the Boeing 9-77 Range
M.D. Bushbeck, A.W, Reed, D.E. Young, and K.J. Painter
Boeing Information, Seattle, Washington

Some Top-Down Experiments for Range Characterization
W.D. Burnside, I.J. Gupta, E.K. Walton, and J.D. Young
The Ohio State University, ElectroScience Laboratory, Columbus, OH

A Technique for Collecting and Processing Flight-Line RCS Data
G. Fliss and J. Burns
ERIM International, Inc., Ann Arbor, MI

RCS Characterization on a Portable Pit with a Foam Column at VHF/UHF
Captain Michael T. Husar and James H. Eggleston
United States Air Force, RATSCAT, Holloman AFB, NM

UWB Noise Radar Using a Variable Delay Line
Eric Walton, Isak Theron, and Suwinto Gunawan
The Ohio State University, ElectroScience Laboratory, Columbus, OH

Authors Index