Distillation and Absorption '97

Edited by
Richard Darton
Distillation processes

<table>
<thead>
<tr>
<th>Paper</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>Clean fuel's impact on refinery distillation</td>
<td>A. Habibullah, F.E. Cumare and M. Sakata (Parsons Process Group Inc, USA)</td>
</tr>
<tr>
<td>38</td>
<td>Simulation of industrial multicomponent MTBE distillation column using an equilibrium stage model with efficiency calculation</td>
<td>J.K. Ilme, K.I. Keskinen, V.L. Markkanen and J.R. Aittamaa (Neste Oy Engineering, Finland)</td>
</tr>
<tr>
<td>40</td>
<td>Optimisation of thermally integrated distillation for low purity oxygen production</td>
<td>S.M. Raney and R.M. Thorogood (North Carolina State University, USA)</td>
</tr>
<tr>
<td>41</td>
<td>Alcohol dehydration, mechanical vapour recompression and heterogeneous azeotropic distillation</td>
<td>W.J. Korchinsky (UMIST, UK) and T. Pears (EA Technology Ltd, UK)</td>
</tr>
<tr>
<td>42</td>
<td>Solvent recovery in peroxyacid pulping</td>
<td>E.I. Muurinen and J.J.K. Sohlo (University of Oulu, Finland)</td>
</tr>
<tr>
<td>43</td>
<td>Analysis of distillation and reaction rate in reactive distillation</td>
<td>H. Bock and G. Wozny (Technische Universität Berlin, Germany)</td>
</tr>
<tr>
<td>44</td>
<td>Simultaneous production of 15N, 18O, 17O isotopes in cascades with discrete homogeneous isotope exchange</td>
<td>V.D. Borman, V.A. Chuzhinov, D.V. Potapov, R.I. Sidenko, G.A. Sulaberidze, A.V. Vetsko and V.M. Vetsko (Moscow State Engineering Physics Institute, Russia)</td>
</tr>
</tbody>
</table>
Paper 45 Separation of oxo-carboxylic acid ester/methanol/water mixtures by a reactive distillation — pervaporation hybrid process
H.-J. Bart (Universität Kaiserslautern, Germany) and H.-O. Reisl (Universität Linz, Germany)

Paper 46 Crude vacuum distillation: wet, dry or damp
A. Habibullah, F.E. Cumare, M. Sakata and G. Hashiguchi (Parsons Process Group Inc, USA)

Paper 47 Using process integration for separation of p-Diethylbenzene
V. Plesu, O. Floarea (University 'Politehnica' of Bucharest, Romania), R. Dragomir and A. Platon (National Research Institute for Petroleum Processing and Petrochemistry, Romania)

Design methods

Paper 48 Advanced distillation synthesis techniques for nonideal mixtures are making headway in industrial applications
O.M. Wahnschafft (Aspen Technology Inc, USA)

Paper 49 Azeotropic distillation design considering mass transfer rates
F.J.L. Castillo and G.P. Towler (UMIST, UK)

Paper 50 Local mass transfer rate in heterogeneous azeotropic distillation by a wetted-wall column
H. Kosuge, N. Saito and K. Asano (Tokyo Institute of Technology, Japan)

Paper 51 Alternative ways of operating a batch distillation column
E. Sørensen (University College London, UK)

Paper 52 Retrofit design and economic optimization of an extractive distillation process
M.H. Bauer (Wacker-Chemie GmbH, Germany), J. Stichlmair (Technical University of Munich, Germany), J. Koehler and N. Schadler (Hoechst AG, Germany)

Paper 53 Process synthesis of a reactive distillation system using attainable region results
C. McGregor, D. Glasser and D. Hildebrandt (University of Witwatersrand, South Africa)

xv
Paper 54 Design of reactive distillation processes with reactive and nonreactive distillation zones
B. Bessling (BASF, Germany), G. Schembecker and K.H. Simmrock (University of Dortmund, Germany)

Paper 55 Multiple solutions in single-product reactive distillation
O.L. Karpilovskiy, Y.A. Pisarenko and L.A. Serafimov (Moscow State Academy of Fine Chemical Technology, Russia)

Paper 56 Effects of unfavourable thermodynamics on reactive distillation column design
M.J. Okasinski and M.F. Doherty (University of Massachusetts, USA)

Paper 57 To the separation of azeotropic mixtures by batchwise extractive distillation
M. Warter, R. Düssel and J. Stichlmair (Technical University of Munich, Germany)

Paper 58 A new approach to reactive distillation simulation and design
E. Pérez Cisneros, M. Schenk and R. Gani (Technical University of Denmark, Denmark)

Paper 59 Mixed integer optimization of processes for the separation of heterogeneous mixtures
S. Glanz and J. Stichlmair (Technical University of Munich, Germany)

Paper 60 Targeting sidestream compositions in multi-component nonideal distillation
J. Bausa, R.V. Watzdorf and W. Marquardt (Lehrstuhl für Prozesstechnik, Germany)

Paper 61 Partitioned Petlyuk arrangements for quaternary separations
A.C. Christiansen, S. Skogestad and K. Lien (Norwegian University of Science and Technology, Norway)

Equipment performance

Paper 62 Do we still need plant-scale – measurements in distillation?
U. Eiden and R. Kaiser (BASF AG, Germany)
Paper 63 Spinning cone column capacity and mass transfer performance
R.G.H. Prince, S. Desho and T.A.G. Langrish (University of Sydney, Australia)

Paper 64 Positive phase control on distillation trays
M.W. Biddulph (University of Nottingham, UK), J.T. Lavin (BOC Process Plants, UK) and C.P. Thomas (Venerabile Collegi Inglese, Italy)

Paper 65 V-grid™ fixed valve vs. sieve tray performance
D.E. Nutter (Nutter Engineering, USA), M.R. Resetarits, N.F. Urbanski and D.R. Monkelbaan (UOP, USA)

Paper 66 Does the point efficiency on sieve trays depend on liquid height and flow regime?
E.F. Wijn (formerly Shell Research and Technology Centre, The Netherlands)

Paper 67 A new generation of Glitsch's high performance tray
A.T. Lee, L.Z. Fan and K.Y. Wu (Glitsch Inc, USA)

Paper 68 Performance of structured packing in a commercial scale column at pressures of 0.02 to 27.6 bar
C.W. Fitz Jr, A. Shariat and J.G Kunesh (Fractionation Research Inc, USA)

Paper 69 Characterization of the performance of packed distillation column liquid distributors
J.F. Billingham, D.P. Bonaquist and M.J. Lockett (Praxair Inc, USA)

Paper 70 Estimation of liquid distribution and mass transfer parameters for ordered packings
S.A. Shetty and R.L. Cerro (University of Tulsa, USA)

Paper 71 Liquid backmixing in structured packing in high pressure distillation
F.J. Zuiderweg (Consultant, The Netherlands), Z. Olujic (Technical University Delft, The Netherlands) and J.G. Kunesh (Fractionation Research Inc, USA)

Paper 72 Estimation of packing efficiencies through evaluation of liquid phase residence time distributions
O. Becker (Universität Erlangen-Nurnberg, Germany)
Paper 73 The performance of packing in high pressure distillation applications
J.L. Nooijen, K.A. Kusters and J.J.B. Pek (Shell International Oil Products, The Netherlands)

Paper 74 Hydraulic performance of gas feed distribution devices
L. Fan, G. Chen, S. Costanzo, A. Lee (Glitsch Inc, USA) and G. Pan (Qing Hua University, China)

Paper 75 The axial and radial mixing characteristics of a column containing corrugated sheet structured packing
K.T. Yu, S.Y. Wang, S.Y. Sun and X.J. Zhu (Tianjin University, China)

Paper 76 New comparisons of high effective modern dumped packings and systematic packed columns
M. Schultes (Raschig AG, Germany)

Paper 77 The influence of various gas inlets on gas distribution in packed column
Y. Xiaojing and L. Weichao (Tianjin University, China)

Paper 78 A new model to predict liquid holdup in packed columns — using data based on capacitance measurement techniques
V. Engel, J. Stichlmair (Technische Universität München, Germany) and W. Geipel (Rauschert Verfahrenstechnik GmbH, Germany)

Paper 79 LDESP: a simulation and optimisation environment for structured packings
Z. Oluljic, J. de Graauw (Delft University of Technology, The Netherlands), A. Roelofse (Sastech Research and Development, South Africa) and F. Stoter (Akzo Nobel Central Research, The Netherlands)

Paper 80 Effect of channels, punctures and engraving in structured packings for distillation service
J. López-Toledo and J.A. Rocha Uribe (Instituto Tecnológico de Celaya, Mexico)

Paper 81 Principles of liquid distribution and scale-up characteristics of Rombopak structured packing
U. Bühlmann (Kühni Ltd, Switzerland)
Paper 82 The phenomenon of self-regulation of phase inversion conditions in irrigated packing
Page 981 Z.N. Memedlyaev (Khimtehnologiya Institute, Ukraine), A.A. Ilyinykh (Technological Institute of Eastern Ukrainian State University, Ukraine) and N.N. Kulov (Institute of General and Inorganic Chemistry, Russia)

Paper 83 Baffled trays with directed vapour input into the liquid
Page 987 P.F. Bondar and Z.N. Memedlyaev (State Research and Design Institute of Chemical Engineering, Ukraine)

Paper 84 A new method to design direct heat transfer sections in packed columns
Page 991 L. Spiegel and P. Bomio (Sulzer Chemtech Ltd, Switzerland)

Paper 85 Fluid mechanical studies of structured distillation packings
Page 999 J.S. Hodson, J.P. Fletcher and K.E. Porter (Aston University, UK)

Paper 86 Modelling foam drainage

Paper 87 Investigations into the scale-up of laboratory distillation columns
Page 1021 L. Deibele (Bager AG, Germany), R. Goedecke (Degussa AG, Germany) and H. Schoenmakers (BASF AG, Germany)