The Sixth International Iron and Steel Congress

Vol. 2 Ironmaking

October 21-26, 1990
Nagoya Congress Center, Nagoya, Japan

The Iron and Steel Institute of Japan
CONTENTS

Vol. 2 Ironmaking

FUTURE OF BLAST FURNACE PROCESS
ADVANCED IRON ORE PREPARATION
DEVELOPMENT OF COKE MAKING

Pretreatments for Agglomerates (1)

Advanced Iron Ore Preparation
Y. Omori and E. Kasai
Tohoku University, JAPAN .. 1

Effect of the Constitution of Granules on Coalescing Phenomenon and Strength
after Sintering
Shengli Wu, E. Kasai and Y. Omori
Tohoku University, JAPAN ... 15

Model for Correlating Ore Properties and Sinter Characteristics
F. Cappel and E. Pfaff
Lurgi GmbH, F. R. GERMANY .. 23

Pretreatments for Agglomerates (2)

Designing Iron Ore Sinter Mixes for Optimum Raw Material Utilization
C. E. Loo, R. P. Williams and L. T. Matthews
BHP Co., Ltd., AUSTRALIA ... 31

Design of Pseudo Particles Considering Distribution of CaO Component in Sinter
T. Kawaguchi, K. Kuriyama, S. Sato, K. Takata and T. Miyake
Sumitomo Metal Industries, Ltd., JAPAN 40

Assimilation Behavior of High-Goethite Ore and Its Control in Production of Sinter
Y. Hida, J. Okazaki and K. Nakamura
Nippon Steel Corporation, JAPAN 48

Processing for Agglomeration (1)

Fundamental Investigation of the Hybrid Pelletized Sinter Process for Blast
Furnace Burden
N. Sakamoto, A. Kumatsuka, H. Noda and H. Yanaka
NKK Corporation, JAPAN ... 56

Commercial Operation of the Hybrid Pelletized Sinter (HPS) at Fukuyama Works
S. Nagano, Y. Niwa, T. Suniguama, O. Komatsu, M. Shimizu and H. Noda
NKK Corporation, JAPAN ... 64

High Iron Optisinter — An Advanced Blast Furnace Iron Ore Burden —
J. O. Edstrom and S. Ajmal
The Royal Institute of Technology, SWEDEN 71
Processing for Agglomeration (2)

Improvement of Sintering Operation by Adding pH Controlled Solution
H. K. Shin, S. J. Yoon and H. J. Yang
Research Institute of Industrial Science and Technology, KOREA 81

Numerical Simulation of the Iron Ore Sintering Process
F. Patisson*, D. Ablitzer*, E. Marlière** and J. M. Steiler**
*École des Mines, FRANCE
**IRSID, FRANCE ... 88

Charging of the Sinter Mix: Recent Investigation
C. Dulcy and J. P. Druet
IRSID, FRANCE ... 96

Structural Analysis of Sintering Bed

Effect of Coke Size and Fuel Distribution in the Mix on the Iron Ore Sintering Process
K. H. Peters, H. Beer, H. W. Kropla and H. Müller
Thyssen Stahl AG, F. R. GERMANY ... 103

Basic Analysis of the Influence of Material Grain Size Segregation on Sintering
T. Inazumi, M. Fujimoto and K. Sato
Nippon Steel Corporation, JAPAN ... 110

Elucidation of Conditions Required to Form Optimum Sinter Cake by Use of Computerized Tomography for Steelmaking Applications
S. Kasama, T. Inazumi and K. Sato
Nippon Steel Corporation, JAPAN ... 118

Properties of Agglomerates for Blast Furnace

Development and Application of Softening-Melting Tests for Blast Furnace Burden Materials
P. K. Roy* and B. Chakravarty**
*Steel Authority of India Ltd., INDIA
**Jadavpur University, INDIA .. 126

Improvement of Reduction Degradation Characteristics of Sinter by Immersion Treatment in Halide Solution
N. Taguchi*, T. Otomo* and Y. Omori**
*Akita University, JAPAN
**Tohoku University, JAPAN .. 134

Influence of Barite Addition on Sinter Reducing Properties
B. Drakalijsky, I. Cherkezov, A. Angelov and Y. Bratkov
Iron and Steel Research Institute, BULGARIA 141

Innovative Technology of Ore Preparation Yard and Sintering Plant (1)

Modernization of Raw Materials Transportation and Treating Department
T. Ikeda, S. Sasaki, T. Iida, J. Sakuragi and T. Ushirokawa
Nippon Steel Corporation, JAPAN .. 147

Automatic Operation System at Chiba No. 4 Sinter Plant
Kawasaki Steel Corporation, JAPAN .. 155

Development of Traversal-Direction Control of Sintering Condition
R. Nakajima, S. Kurosawa, H. Fukuyo, T. Wada, R. Kimura and Y. Yamaoka
NKK Corporation, JAPAN .. 163
Innovative Technology of Ore Preparation Yard and Sintering Plant (2)

Improvement of Sintering Operation by the Strand Extension at Wakayama No. 4 Sinter Plant
T. Shoho, K. Yanagisawa, T. Miyake, K. Kitamura and M. Kasawaki
Sumitomo Metal Industries, Ltd., JAPAN .. 171

Anti-Pollution and Waste Heat Recovery for Sintering Plant
S. Yamada, H. Kondo and H. Shiraishi
Sumitomo Heavy Industries, Ltd., JAPAN .. 179

Cokemaking Fundamentals

Recent Trends in and Future Outlook for Cokemaking Technology in the Japanese Steel Industry
M. Tateoka
Nippon Steel Corporation, JAPAN .. 186

Analysis of the Carbonization Process in a Coke Oven Chamber, and Control of Coke Quality
K. Shiraishi*, M. Sakawa*, Y. Sakurai*, T. Okuhara* and Y. Aramaki**
*Nippon Steel Corporation, JAPAN
**Nippon Steel Chemical Co., Ltd., JAPAN ... 195

Measure of the Level of Cracking in the Coke Oven — Severity Indices
D. Dumay, J.-F. Geny and D. Isler
Centre de Pyrolyse de Marienau, FRANCE ... 203

Application of Theoretical Models to Coke and By-Product Quality Control
K. Igawa, S. Kasaoka and H. Ohshima
Kawasaki Steel Corporation, JAPAN ... 211

Coke Quality

Development and Application of Automatic On-Line Analyzer for By-Products Process in Coke Plant
R. Nakajima, S. Hasebe, S. Matsumura and H. Taketomi
NKK Corporation, JAPAN ... 219

Study of the Size Degradation Behavior of Coke
T. Arima, T. Nishi and T. Okuhara
Nippon Steel Corporation, JAPAN ... 226

Behaviour of Metallurgical Coke at High Temperature
N. Suzuki*, S. Itagaki*, S. Mitani*, S. Sato** and A. Kurumada**
*NKK Corporation, JAPAN
**University of Ibaraki, JAPAN .. 234

Production of Coke with a Large Amount of Low Grade Coal Based on the Coke Degradation Mechanism in the Blast Furnace
H. Iwakiri, T. Kaminou, H. Tanaka, F. Noma and J. Kiguchi
Kobe Steel, Ltd., JAPAN ... 241

Coal Pretreatments (1)

Progress in Cokemaking Technology, Advanced Standard of Today and the "New Face" of Coking Plants of Tomorrow
G. Neshan
Ruhrkohle AG, F. R. GERMANY ... 249
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal Moisture Control System at Nakayama Steel Coke Oven Battery</td>
<td>M. Ueda, T. Kawata and R. Kishida</td>
<td>259</td>
</tr>
<tr>
<td>Loading Leveler and Partial Charging of Moisture Controlled Coal for</td>
<td>K. Miura, K. Inoue and K. Nishioka</td>
<td>267</td>
</tr>
<tr>
<td>Uniform Carbonization in the Coke Oven</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coal Pretreatments (2)</td>
<td>M. Yokomizo, M. Fukunaga, Y. Nakagawa and T. Iguchi</td>
<td>274</td>
</tr>
<tr>
<td>Results of the Preheated Coal Charging Operation at Muroran No. 6 Coke Oven Battery</td>
<td>M. Yokomizo, M. Fukunaga, Y. Nakagawa and T. Iguchi</td>
<td>274</td>
</tr>
<tr>
<td>Coke-Making by Stamp Charging</td>
<td>H. Z. Kuyumcu</td>
<td>282</td>
</tr>
<tr>
<td>The Role of Stamp Charging in Improving the Quality of Coke from Indian Coals</td>
<td>A. K. Das, A. Chatterjee, C. D. Kamath, T. Mukherjee and J. J. Irani</td>
<td>291</td>
</tr>
<tr>
<td>Cokemaking Operations (1)</td>
<td>Y. Kato, H. Yoshida, H. Sato, T. Sumigama, Y. Watanabe, Y. Yamate and Y. Ishiguchi</td>
<td>300</td>
</tr>
<tr>
<td>Coke Oven Control and Transient Operating Conditions</td>
<td>R. Munnix*, D. Steyls*, G. Bury**, and S. Delfanne**</td>
<td>306</td>
</tr>
<tr>
<td>Development of Computerized Operation Control System for Coke Oven</td>
<td>Y. Kawaguchi, Y. Niwa, T. Sumigama, Y. Watanabe, F. Kuwada and M. Inaba</td>
<td>314</td>
</tr>
<tr>
<td>Cokemaking Operations (2)</td>
<td>T. Kondo, M. Numazawa, T. Matada, T. Sakai and Y. Narita</td>
<td>322</td>
</tr>
<tr>
<td>Actual Application of Hot Repairing Machine on Operational Coke Ovens</td>
<td>I. Minamisawa, S. Kato, Y. Ito and K. Sato</td>
<td>329</td>
</tr>
<tr>
<td>Optimal Automatic Operation of the Kashima Coke Dry-Quenching System</td>
<td>S. Kataoka*, J. Otsuka*, N. Yasukouchi* and H. Katahira**</td>
<td>337</td>
</tr>
<tr>
<td>Establishment of Coke Dry Quenching Technology with a Maximum Coke</td>
<td>Nippon Steel Corporation, JAPAN</td>
<td></td>
</tr>
<tr>
<td>throughput of 200 T/H</td>
<td>Nippon Steel Chemical Co., Ltd., JAPAN</td>
<td></td>
</tr>
<tr>
<td>Controlling System of BF Operations (1)</td>
<td>T. Shibuya and R. Nakajima</td>
<td>345</td>
</tr>
<tr>
<td>Title</td>
<td>Author(s)</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Controlling System of BF Operations (2)</td>
<td>Zhou Yusheng*, Yang Tianjun*, Zhao Mingge*, Qi Baoming*, Chen Hongjie** and Li Anning**</td>
<td>372</td>
</tr>
<tr>
<td>Development of Expert Systems to Predict Blast Pressure in Blast Furnace Operations at Ofita No. 2 Blast Furnace</td>
<td>Sang Ho YI*, II Ock Lee*, Jeon Young Lee**, Hoo Geun Lee*** and Jae Gee Jin***</td>
<td>379</td>
</tr>
<tr>
<td>Analysis of Internal State and Operations of BF (1)</td>
<td>A. Poos</td>
<td>395</td>
</tr>
<tr>
<td>Optical Sensing in the Blast Furnace Raceway Zone</td>
<td>A. B. Duval, J. C. Scott, P. C. Wall and J. M. Burgess</td>
<td>405</td>
</tr>
<tr>
<td>Analysis of Flow and Reaction in Lower Part of Blast Furnace by High-Precision Mathematical Model</td>
<td>T. Sugiyama, S. Matuzaki and T. Nakagawa</td>
<td>414</td>
</tr>
</tbody>
</table>
Kobe Steel, Ltd., JAPAN | 422 |
| The Reaction Caused by the Mixing of Coke into the Ore Layer in a Blast Furnace | M. Isobe, T. Sugiyama and S. Inaba | 439 |
Burden Distribution

Development of New Charging System and Its Control for Blast Furnace
Du Hegui* and Hua Youfu**
*Northeast University of Technology, CHINA
**Jinan Ironmaking Plant, CHINA

Control of Burden Distribution at Blast Furnace Top
T. Inada, Y. Kajiwara, T. Tanaka and T. Jimbo
Sumitomo Metal Industries, Ltd., JAPAN

Control of Burden Distribution at Kure No. 2 Blast Furnace
T. Oishi
Nisshin Steel Co., Ltd., JAPAN

Center Coke Charging Method and High Rate Coal Injection at Kakogawa No. 2 Blast Furnace
Y. Matsui, K. Kuwano, R. Hori, H. Miyatani, S. Tada and K. Matsunaga
Kobe Steel, Ltd., JAPAN

Coal Injection

Upper Limits to Amounts and Particle Sizes of Pulverized Coal Injected into Blast Furnaces As Viewed from Combustibility
Nippon Steel Corporation, JAPAN

Pulverized Coal Injection at Mizushima No. 4 Blast Furnace
M. Ohgami, H. Sugawara, M. Yamazaki and S. Tamura
Kawasaki Steel Corporation, JAPAN

Limits of Coal Injection
K. H. Peters, M. Peters, B. Korthas, K. Mülheims and K. Kreibich
Thyssen Stahl AG, F. R. GERMANY

Prospects of Blast Furnace Technology with High Pulverized Coal Injection and Oxygen Enrichment in China
Zhang Shourong and Yu Zhong Jie
Wuhan Iron and Steel Co., CHINA

Integrated Operations of BF and Their Achievements (1)

Extending the Campaign Life of Kashima No. 3 Blast Furnace
A. Koike, K. Takata, Y. Yanagibashi, J. Kariya, M. Kojima and K. Sato
Sumitomo Metal Industries, Ltd., JAPAN

High Productivity Operation in NKK's Ohgishima No. 2 Blast Furnace
R. Nakajima, S. Kishimoto, B. Iino, H. Hotta, H. Ito, S. Furuya and I. Ohkouchi
NKK Corporation, JAPAN

Investigation on Burden Descent in the Blast Furnace
M. Giuli*, M. Pinti*, G. Federico** and E. Salvatore**
*Centro Sviluppo Materiali S. p. A., ITALY
**ILVA, ITALY

Blast Furnace Operation for Low Silicon Content at Fukuyama No. 5 Blast Furnace
Y. Niwa, T. Sumigama, A. Maki, A. Yamaguchi, H. Inoue and T. Tamura
NKK Corporation, JAPAN
Integrated Operations of BF and Their Achievements (2)

Mechanization and Rationalization of Blast Furnace Plant
Nippon Steel Corporation, JAPAN .. 535

The Development of a Metallization Process Based on High-Temperature Conversion in Regenerators
V. M. Zaichenko, V. A. Rabinkov and E. M. Shelkov
Institute for High Temperatures, USSR Academy of Sciences, USSR .. 543

Innovation in BF Route (1)

Rate Limiting Steps and Future Development of Blast Furnace Ironmaking
W-K. Lu
McMaster University, CANADA .. 548

Simultaneous Injection of Pulverized Coal and Dolomite into Blast Furnace Tuyeres
S. Komatsu, K. Sato, C. Yamagata, Y. Kajiwara and S. Suyama
Sumitomo Metal Industries, Ltd., JAPAN .. 558

Iron Ore and Flux Injection through Blast Furnace Tuyeres and Its Effect on Raceway Phenomena
K. Takeda, Y. Sawa, S. Taguchi, N. Takashima, T. Matsumoto and H. Obata
Kawasaki Steel Corporation, JAPAN .. 566

Innovation in BF Route (2)

Operation Results of 10 T/D Scale New Ironmaking Process
Kawasaki Steel Corporation, JAPAN .. 574

Development of the Oxygen Blast Furnace Process
M. Matsuura, H. Mitsufuji, T. Furukawa and Y. Ohno
NKK Corporation, JAPAN .. 581

The Full Oxygen Blast Furnace (FOBF) Process
Qin Minsheng and Qi Baoming
University of Science and Technology Beijing, CHINA .. 589