The Sixth International Iron and Steel Congress

Vol. 1 Fundamentals

October 21-26, 1990
Nagoya Congress Center, Nagoya, Japan

The Iron and Steel Institute of Japan
CONTENTS

Vol. 1 Fundamentals

OPENING LECTURE

FUNDAMENTALS FOR REFINING
AND SOLIDIFICATION PROCESSING

Opening Lecture

The Provenance of Copper Used in the Casting of the Great Buddha at Todai-Ji Temple
Y. Kuno
Sambo Copper Alloy Co., Ltd., JAPAN .. 1

Recent Trends and Future Tasks in Ironmaking and Steelmaking
Y. Yagi
Kawasaki Steel Corporation, JAPAN .. 7

The Post-2000 North American Iron and Steel Industry
H. W. Paxton
Carnegie Mellon University, USA .. 17

Technical Trends in Iron and Steelmaking
F. Fitzgerald
British Steel plc, UK ... 28

Direction for the Development of Iron and Steel Technology in the Newly
Industrialized Countries
Hyung Sup Choi
National Academy of Sciences, KOREA .. 38

Gaseous Reduction (1)

Morphological Changes during Short-Time Gaseous Reduction of Hematite
and Magnetite
B. Deo*, R. K. Dube** and R. Boom*
*Hoogovens Ijmuiden, THE NETHERLANDS
**Indian Institute of Technology, INDIA .. 45

TEM Observation of Magnetite and Wustite Implanted with Hydrogen
M. Katsumi, Y. Tamura, Y. Kashiwaya and K. Ishii
Hokkaido University, JAPAN .. 50

Gaseous Reduction (2)

Effective Gas Diffusivity through the Morphology-Controlled Calcium Ferrite and
Hematite during Stepwise Reduction
Y. Shigeno and Y. Omori
Tohoku University, JAPAN .. 58

Kinetics of Wustite Reduction with H₂ and CO in Presence of Catalysts Separated
from the Wustite
I. Barin*, M. Lemperle*, J. F. Majewski** and A. Von Richthofen***
*KHD Humboldt Wedag AG, F. R. GERMANY
**PCM, F. R. GERMANY
***Technische Hochschule Aachen, F. R. GERMANY 66
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction of Wustite Pellets with Gas Mixtures of H₂-CO System</td>
<td>T. Murayama and Y. Ono</td>
<td>75</td>
</tr>
<tr>
<td>Influence of H₂O Partial Pressure upon the Retardation in the Final Stage of Reduction of Fluxed Pellets with H₂-H₂O Gas Mixture</td>
<td>T. Usui*, M. Ohmi**, T. Okhata***, Y. Kawaguchi****, Y. Yamaoka***** and Z. Morita*</td>
<td>83</td>
</tr>
<tr>
<td>Kinetics of Gaseous Reduction of Quaternary Calcium Ferrite</td>
<td>T. Maeda and Y. Ono</td>
<td>92</td>
</tr>
<tr>
<td>Drying and Reduction of Cement-Bonded Pellets by Using a Moving Bed Reactor</td>
<td>R. Takahashi, T. Akiyama and J. Yagi</td>
<td>108</td>
</tr>
<tr>
<td>An Experimental Study of a New Direct Route for Making Steel Strips from Preformed Magnetite Superconcentrate Blocks Using Solid Reductants</td>
<td>R. K. Dube, T. K. Vethanayagam and S. Kumar</td>
<td>116</td>
</tr>
<tr>
<td>Reduction in Liquid State Slags</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical and Physical Changes Occurring As Oxide and DRI Pellets Are Heated in Liquid Slags</td>
<td>J. F. Elliott* and R. J. O'Malley**</td>
<td>131</td>
</tr>
<tr>
<td>Influence of Various Factors on the Mass Transfer Rate of Oxide Cr in Molten Slag Phase</td>
<td>S. Kitamura, T. Arai, M. Matsuo and K. Okohira</td>
<td>139</td>
</tr>
<tr>
<td>Observation of Slag Foaming by X-Ray Fluoroscopy</td>
<td>Y. Ogawa and N. Tokumitsu</td>
<td>147</td>
</tr>
<tr>
<td>A Study on Niobium Enrichment in BF from Baotou Iron Niobium Ore in China</td>
<td>Yang Tianjun*, Dong Yicheng*, Zhou Yusheng*, Qi Baoming* and He Xuchun**</td>
<td>153</td>
</tr>
</tbody>
</table>
Experimental Study on the Reduction of FeO in LD Slag
Cen Yongquan and Chen Qizhong
Shanghai No. 2 College of Metallurgy, CHINA

Thermodynamics of Slags (1)

Thermodynamic Behavior of Rare Earth and Alkaline Earth Elements in Molten Iron and Nickel
Qiyong Han
University of Science and Technology Beijing, CHINA

Activities of Iron Oxide and Ratio of Ferrous to Ferric Ion of FeO-Na2O-SiO2 System
Dow-Bin Hyun and Jae-Dong Shim
Korea Institute of Science and Technology, KOREA

Thermodynamic and Crystallization Model of Slags for Ladle Treatment of Steel
A. I. Zaitsev, N. V. Korolyov, B. M. Mogutnov and Vyatkin Yu. F.
I. P. Bardin Central Research Institute of Ferrous Metallurgy, USSR

Thermodynamic Aspects of Oxygen Refining and Carbothermic Reduction Processes for the System Fe-Cr-Ni-C-Si-Cr2O3
W. Dresler
Laurentian University, CANADA

Thermodynamics of Slags (2)

Activities of CaO and Al2O3 in CaO-Al2O3-CaS Slags Saturated with CaS and the Equilibrium between the Slags and Molten Iron Alloys at 1873 K
T. Fujisawa, C. Yamauchi and H. Sakao
Nagoya University, JAPAN

Discussion on Formation of Non-Metallic Inclusions during Continuous Casting of High Carbon Billets
R. Morales D. and E. Martinez R.
Instituto Politécnico Nacional, E.S.I.Q.I.E., MEXICO

Activities of Calcium Oxide in CaO-Based Inclusions Measured by Galvanic Cells
K. Nagata*, J. Tanabe* and K. S. Goto**
*Tokyo Institute of Technology, JAPAN
**The Ohio State University, USA

Measurement of Activities for Silica and Titania in Liquid SiO2-CaO-Al2O3-MgO and SiO2-TiO2-Al2O3-MgO Blast Furnace-Type Slags
Du Hegui, Xue Xiangxin and Che Yinsheng
Northeast University of Technology, CHINA

Electrochemical Reactions at Iron/Slag Interface and Changing Pattern of Fe2+ in Slag Phase
Wei Chiho and Xiang Shunhua
Xian Institute of Metallurgy and Construction Engineering, CHINA

Basicity of Slags (1)

A Discussion on Basicity of CaO-SiO2 and CaO-Al2O3 Binary Systems Based on Bonding Structure
Jiang Gue Chang and Xu Kuang Di
Shanghai University of Technology, CHINA

Optical Basicity and Thermodynamic Properties of Na2O-Based Slags at Steelmaking Temperature
K. Kunisada and H. Iwai
College of Industrial Technology, JAPAN
Basicity of Slags (2)

A Statistical Thermodynamics Model of Sulphur and Fluorine Bearing Iron-and Steelmaking Slags
J. Lehmann*, H. Gaye*, W. Yamada** and T. Matsumiya**
*IRSID, FRANCE
**Nippon Steel Corporation, JAPAN

Mathematical Expression of Manganese Distribution in Steelmaking Process by Quadratic Formalism
M. Hino, I. Kikuchi*, A. Fujisawa** and S. Ban-ya
Tohoku University, JAPAN
*Now NKK Corporation, JAPAN
**Now Aichi Steel Works, Ltd., JAPAN

Carbonate Capacity of CaO-CaF₂-SiO₂ Melts
T. Ikeda and M. Meada
The University of Tokyo, JAPAN

Dephosphorization (1)

Determination of the Standard Gibbs Energies of Formation of Calcium Compounds Associated with Steel Refining
N. Sano, Dong Joon Min* and T. Wakasugi
The University of Tokyo, JAPAN
*Now Carnegie Mellon University, USA

Thermodynamic of Dephosphorization of Alloyed Steels under Reducing Conditions
A. I. Zaitsev, N. V. Korolyov and B. M. Mogutnov
I. P. Bardin Central Research Institute of Ferrous Metallurgy, USSR

Highly Basic CaO-Fe₂O₃ Based Slags for Steel Dephosphorization
Zongshu Zou* and L. Holappa
Helsinki University of Technology, FINLAND

Reaction between High Carbon Iron and Sodium Carbonate Associated with Dephosphorization of Hot Metal
N. Shinozaki*, Y. Takebayashi**, K. Mori** and Y. Kawai***
*Kyushu University. Now Kyushu Institute of Technology, JAPAN
**Kyushu University, JAPAN
***Nippon Steel Corporation, JAPAN

Dephosphorization (2)

Kinetics of Simultaneous Reactions between Molten Iron of High Carbon Concentration and Slag Containing Iron Oxide
Pan Wei, M. Sano, M. Hirasawa and K. Mori
Nagoya University, JAPAN

Development of Reducing Dephosphorization Process for Stainless and High-Alloy Steels
C. Borgianni*, R. D'Angelo*, P. Sommovigo*, A. Poli** and A. Roffin**
*Centro Sviluppo Materiali S. p. A., ITALY
**ILVA S. p. A., ITALY

Characterization of Dephosphorizing Processes for Mn Alloys
Y. E. Lee
Elkem Metals Company, USA
Proceedings of The Sixth International Iron and Steel Congress, 1994, Nagoya, Japan

Removal of Impurities (1)

Improvement of Nitrogen Desorption from Steel Melts
T. Harada* and D. Janke**
*Nippon Steel Corporation, Japan
**Max-Planck-Institut für Eisenforschung, F. R. Germany

Nitrogen Removal from Molten Steel by Reductive Gases
S. Mukawa, Y. Mizukami and T. Komai
Nippon Steel Corporation, Japan

Desiliconization of Molten Iron by Using of FeCl₂ or Cl₂
M. Sasabe and M. Kaneko*
Chiba Institute of Technology, Japan
*Now Yokogawa Steel Co., Ltd., Japan

Removal of Impurities (2)

Copper Removal from Iron Melts with Sodium Sulphide Slags
V. I. Kashin*, A. M. Katanev* and A. S. Krylov**
*Baikov Institute of Metallurgy, USSR Academy of Sciences, USSR
**Lomonosov-State University, USSR

New Recovery Process of Kish Carbon
T. Ema*, A. Kitahara* and M. Kitamura**
*The Kansai Coke and Chemicals Co., Ltd., Japan
**Kobe Steel, Ltd., Japan

Reaction Kinetics and Transport Phenomena (1)

Kinetics of Decarburization of Molten Iron of Low Carbon Concentration
M. Sano, Han Ye-Tao and M. Katoh
Nagoya University, Japan

Physicochemical Modelling of Converter Steelmaking
E. Andersin and H. Jalkanen
Helsinki University of Technology, Finland

Investigations on Water-Air Models to Optimize Channel-Type Reactors for Continuous Decarburization of Fe-C Melts in a Top-Blowing Process
K. Koch, E. Steinmetz, J. Lamut and E. Korte
Technical University Clausthal, F. R. Germany

Characteristics of Mass Transfer at the Free Surface of Liquid in a Gas-Stirred System
S. Taniguchi, Y. Okada*, A. Sakai* and A. Kikuchi
Tohoku University, Japan
*Now Sumitomo Metal Industries, Ltd., Japan

Reaction Kinetics and Transport Phenomena (2)

The Multiple Jet Flow Characteristics of Dual-Flow Oxygen Lance for Post Combustion
Tsai Chihpeng, Tu Hong, Liang Yun, Ma Enxiang, Qian Zhanmin and Wei Weiheng
Institute of Chemical Metallurgy, Academia Sinica, China

Velocity Distribution in Model BOF Nozzles
and K. P. Jagannathan**
*Indian Institute of Technology, India
**Steel Authority of India Ltd., India
Analyses on Flow Field and Operating Parameters for a Dual Oxygen Flow Lance
Ma Enxiang, Tsai Chihpeng, Liang Yun, Qian Zhanmin, Wei Weisheng and Tu Hong
Institute of Chemical Metallurgy, Academia Sinica, CHINA ... 415

Bubbles and Fine Particles in Molten Metals (1)
Fluid Flow and Bubble Size Distribution in Gas-Stirred Liquid Wood's Metal
Y. K. Xie, S. Orsten and F. Oeters
Berlin Technical University, F. R. GERMANY ... 421

Bubble Dispersion Phenomena in Cold Model and Hot Metal Baths
M. Kawakami, S. Hosono*, S. Douwaki** and K. Ito
Toyoasaki University of Technology, JAPAN
*Now Seiko Epson Co., JAPAN
**Now Shimadzu Co., JAPAN ... 429

A Single Particle Penetration into Liquid As a Basis of Powder Injection
Jueng-Gil Lee, K. Ito, S. Toyoda and M. Tokuda
Tohoku University, JAPAN ... 437

A Computational Model for the Prediction of Turbulent Recirculating Two-Phase Flows
in a Gas-Stirred Steel Ladle
M. Burty*, Y. Fautrelle** and D. Huin*
*IRSID, FRANCE
**MADYLAM, FRANCE ... 444

Bubbles and Fine Particles in Molten Metals (2)
The Breakup of Bubbles into Jets during Submerged Gas Injection
Y.-F. Zhao and G. A. Irons
McMaster University, CANADA .. 452

Scaling Equations for Gas Stirred Ladle Systems
D. Mazumdar* and R. Guthrie**
*Indian Institute of Technology, INDIA
**McGill University, CANADA .. 460

Effects of the Viscosity of Liquid on the Characteristics of Bottom Blowing Bubbling
Jet in a Cylindrical Vessel
M. Iguchi, H. Tomida, A. Kawajiri, T. Uemura and Z. Morita
Osaka University, JAPAN ... 469

Velocity Measurement in a Gas Injection Vessel Using Multi-Particle Tracking Method
T. Uemura, M. Iguchi, H. Kawabata and Z. Morita
Osaka University, JAPAN ... 477

Interfacial Phenomena between Metal, Slag and Refractory
A Kinetic Study of the Vaporization Phenomena in CaZrO3 and BaZrO3
between 1600° and 2000°C
K. Gourishankar, G. R. St. Pierre and K. S. Goto
The Ohio State University, USA .. 483

Testing of Metallurgical Fluxes
R. DasGupta*, M. H. Chiang** and J. A. Clum***
*Milwaukee School of Engineering, USA
**China Steel Corporation, CHINA
***State University of New York, USA .. 492
Interfacial Tension and Contact Angle Variations in Liquid Steel and Liquid Steel-Slag Systems
I. Jimbo and A. W. Cramb
Carnegie Mellon University, USA ... 499

Removal of Scale from Metal Products Surface
V. I. Kashin and A. E. Tugovikov
Baikov Institute of Metallurgy, USSR Academy of Sciences, USSR 505

Chemical Sensors
Combined Gas Sensor Consisting of CaAl₂-Alumina and Zirconia Solid Electrolytes for Simultaneous Determination of P₀₂, P_co and P_co₂
Y. Iguchi, M. Nishikohri* and M. Kawamura
Tohoku University, JAPAN
*Now Kawasaki Steel Corporation, JAPAN ... 513

Sensors for Iron and Steelmaking
M. Iwase* and A. McLean**
*Kyoto University, JAPAN
**University of Toronto, CANADA ... 521

The Evaluation and Application of a Plug-Type Oxygen Probe in High-Temperature Slag-Metal Systems of Low Oxygen Potential
J. M. A. Geldenhuis* and R. J. Dippenaar**
*Iscor Ltd., SOUTH AFRICA
**University of Pretoria, SOUTH AFRICA ... 529

Collaborate Research Activities for the Development of Electrochemical Sensor for Rapid Determination of Chromium Content in Molten Iron
M. Iwase*, M. Sasebe**, Y. Iguchi***, T. Onouye**** and K. S. Goto*****
*Kyoto University, JAPAN
**Chiba Institute of Technology, JAPAN
***Tohoku University, JAPAN
****Kobe Steel, Ltd., JAPAN
*****Tokyo Institute of Technology, JAPAN ... 537

Refining in a Plasma Furnace
Metallurgical Results from a 30 T AC Plasma Ladle Furnace
*Rheinisch-Westfälische Technische Hochschule, F. R. GERMANY
**Krupp Stahl AG, F. R. GERMANY
***Mannesmann Demag Hüttentechnik, F. R. GERMANY ... 543

Spectroscopic Measurements of Plasma Temperature and Iron Vapour Density in Ar Plasma Melting
Y. Kashiwaya, S. Onishi and K. Ishii
Hokkaido University, JAPAN ... 551

Fluid Flow and Solidification
Process Parameters of the Solidification Grain Structure
F. Durand
MADYLAM, FRANCE ... 559

Effects of Liquid Stirring and Superheat on the Deflection of Grains in the Columnar Zone during Solidification of Alloys
M. Moukassi* and G. Lesoult
Ecole des Mines, FRANCE
*Now Unimétal Recherche, FRANCE .. 567
A Fine Control of Melt Flow by a Stopper Rod in Small Scale Continuous Casting
T. Sato, K. Shibuya, S. Nara and N. Morito
Kawasaki Steel Corporation, JAPAN ... 574

Solidification and Inclusions (1)

Fundamentals for Refining and Solidification Processing
K. Schwerdtfeger
Technical University Clausthal, F. R. GERMANY 580

Roles of Oxides in Steels Performance
— Metallurgy of Oxides in Steels-1 —
J. Takamura and S. Mizoguchi
Nippon Steel Corporation, JAPAN ... 591

Control of Oxides as Inoculants
— Metallurgy of Oxides in Steels-2 —
S. Mizoguchi and J. Takamura
Nippon Steel Corporation, JAPAN ... 598

Solidification and Inclusions (2)

Effect of Zr on the Precipitation of MnS in Low Carbon Steels
— Metallurgy of Oxides in Steels-3 —
T. Sawai, M. Wakoh, Y. Ueshima and S. Mizoguchi
Nippon Steel Corporation, JAPAN ... 605

The Features of Oxides in Ti-Deoxidized Steel
— Metallurgy of Oxides in Steels-4 —
S. Ogibayashi, K. Yamaguchi, M. Hirai, H. Goto, H. Yamaguchi and K. Tanaka
Nippon Steel Corporation, JAPAN ... 612

Development of Simulation Model for Composition Change of Nonmetallic Inclusions
during Solidification of Steels
W. Yamada*, T. Matsumiya* and A. Ito**
*Nippon Steel Corporation, JAPAN
**Nippon Steel Information and Communication Systems Inc., JAPAN 618

Analysis of Chemical Interactions at Cooling and Crystallization of Steel Melts
A. A. Romanov, N. A. Vatolin and S. S. Katz
Institute of Metallurgy, Ural Division of the USSR Academy of Sciences, USSR 626

Solidification and Inclusions (3)

Mechanism of MnS Formation in Low-Carbon Resulphurized Free-Cutting Steel and
Effect of Cooling Rate on Formation Behavior of MnS
K. Isobe, Y. Ueshima, H. Maede, S. Mizoguchi, A. Ishikawa and I. Kudo
Nippon Steel Corporation, JAPAN ... 634

Precipitation Behavior of Nonmetallic Inclusions in Low Carbon Steels
during Rapid Solidification
Y. Ueshima, T. Sawai, T. Mizoguchi, K. Miyazawa and S. Mizoguchi
Nippon Steel Corporation, JAPAN ... 642

Influence of the Addition of REM and Alloying Elements on the Behavior of MC Carbide
Formation during Solidification of 3%V High Speed Tool Steels
Y. Tamura and N. Uchida
Hitachi Metals, Ltd., JAPAN .. 649
Segregation and Shell Formation

Microsegregation of Solutes in Low Carbon Steels
Geon Shin, T. Suzuki and T. Umeda
The University of Tokyo, JAPAN ... 657

Numerical Model for Prediction of Chemical-Type Segregation in Heavy Steel Ingots
F. Roch*, H. Combeau*, I. Poitrault**, J. C. Chevrier* and G. Lesoult*
*Ecole des Mines, FRANCE
**Creusot-Loire Industrie, FRANCE ... 655

Analysis and Prevention of Centerline Segregation during Continuous Casting of Steel Related to Deformation of Solid Phase
G. Lesoult* and S. Sella**
*Ecole des Mines, FRANCE
**ROTELEC, Now S. L. N., FRANCE ... 673

Computer Simulation of Macrosegregation in Continuously Cast Steel Slabs
I. Ohnaka and T. Shimazu
Osaka University, JAPAN ... 681

Control of Uneven Solidified Shell Formation in Hypo-Peritectic Carbon Steel
H. Murakami, M. Suzuki and S. Miyahara
NKK Corporation, JAPAN ... 689

δ-γ Formation during Solidification

Analyses of Fraction Solid and δ-γ Transformation during Solidification of Statically Undercooled Molten Carbon Steels
M. Kudoh, K. Ohsasa and Yang Gao
Hokkaido University, JAPAN ... 697

Simulation of Solidification Process and Prediction of δ-Ferrite Distribution in Continuously Cast Austenitic Stainless Steels Slabs
X. G. Wang, C. Dumortier and Y. Riquier
Polytechnic Faculty of Mons, BELGIUM .. 705

Solidified Structure and Properties

Influence of Precipitates in a Cast Ingot on Hot Workability of Alloy 625
H. Morikawa, J. Ishimaru and M. Hasegawa
Nisshin Steel Co., Ltd., JAPAN ... 713

Solidification Phenomena and Properties of Some Cast Tool Steels
A. Shokuhfar
K. N. Toosi University of Technology, IRAN ... 721