TABLE OF CONTENTS

GENERAL SESSION

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVISMA: Back to the Future</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Yuri Beilin, MENATEP Bank</td>
<td></td>
</tr>
<tr>
<td>Development in Processing in Titanium Industry</td>
<td>8</td>
</tr>
<tr>
<td>Dr. Y. Combres and Dr. B. Champin, CEZUS</td>
<td></td>
</tr>
<tr>
<td>Recent Alloy Development and Emerging Market Opportunity in Japan</td>
<td>20</td>
</tr>
<tr>
<td>Makoto Yamada, Japan Titanium Society</td>
<td></td>
</tr>
<tr>
<td>State of the U.S. Titanium Industry</td>
<td>39</td>
</tr>
<tr>
<td>Kirby C. Adams, TIMET</td>
<td></td>
</tr>
<tr>
<td>The Status and Prospects for Non-Aerospace Application of Titanium in China</td>
<td>45</td>
</tr>
<tr>
<td>Li Zuochen, Luo Guozhen and Deng Ju, Northwest Institute for Nonferrous Metal Research</td>
<td></td>
</tr>
</tbody>
</table>

AEROSPACE

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta Alloy Applications on the Boeing 777</td>
<td>54</td>
</tr>
<tr>
<td>Launie Fleming, Exotic Metals Forming Company</td>
<td></td>
</tr>
<tr>
<td>Explosion Welded Transition Joints for Structural Welds between Titanium and Dissimilar Metals</td>
<td>62</td>
</tr>
<tr>
<td>John G. Banker, Explosive Fabricators, Inc.</td>
<td></td>
</tr>
<tr>
<td>Manufacture and Test of Cast Gamma Titanium Aluminide Low Pressure Turbine Blades</td>
<td>70</td>
</tr>
<tr>
<td>Thomas J. Kelly, General Electric Aircraft Engines</td>
<td></td>
</tr>
<tr>
<td>Permanent Mold Casting of Titanium Aerospace Components</td>
<td>84</td>
</tr>
<tr>
<td>Gregory N. Colvin, Howmet Corporation</td>
<td></td>
</tr>
<tr>
<td>David W. Anderson and Robert J. Schmalholz, United Technologies/Pratt & Whitney</td>
<td></td>
</tr>
<tr>
<td>Process Development of Alloy C: A Non-Burning Titanium Alloy For Aerospace Applications</td>
<td>91</td>
</tr>
<tr>
<td>David W. Anderson, Pratt & Whitney</td>
<td></td>
</tr>
<tr>
<td>Alex F. Condliff (Retired), Teledyne Wah Chang Albany</td>
<td></td>
</tr>
<tr>
<td>Titanium Applications on the F-22 Advanced Tactical Fighter</td>
<td>103</td>
</tr>
<tr>
<td>Henry R. Phelps, Lockheed Aeronautical Systems Company</td>
<td></td>
</tr>
<tr>
<td>Carol Harberg, Boeing Military Aircraft Company</td>
<td></td>
</tr>
<tr>
<td>Titanium-Ceramic Composites</td>
<td>115</td>
</tr>
<tr>
<td>Titanium Honeycomb Sandwich Structures for High Temperature Acoustic Aerospace Applications</td>
<td>127</td>
</tr>
<tr>
<td>Rob LeHolm and Mike Martinez, Rohr, Inc</td>
<td></td>
</tr>
</tbody>
</table>
EMERGING
Application Development of Titanium in Japan ... 145
Japan Titanium Society - Application Development Committee
Taishi Moroishi, Nakoto Yamada, Masamitsu Fujii, Yasushi Murakami, and
Akira Kawabe

Comparison of Ti-6Al-4V and Low-Cost Titanium Alloy Ballistic Properties 158

Electropolishing and Surface Hardening for Racing Cars and Implants 167
Willard E. Kemp, Kemp Development Corporation

High Performance Titanium Automotive Components ... 174
Charles L. Dohogne, Rancho Industries

Low Cost Beta Automotive Applications .. 179
Paul G. Allen and Allan J. Hutt, TIMET, HTL

PEO ASM: Directions in Weight Reduction ... 189
Terrance M. Dean, Survivability Systems

Permanent Mold Casting of Titanium Aluminide Automotive Valves 220
Gregory Colvin, Howmet Corporation

Titanium Architectural Applications in Japan ... 227
Ryotaro Oyagi, Sumitomo Metal Ind., Ltd.

INDUSTRIAL
Dedication of Titanium Service Water Piping at Pilgrim Nuclear Power Station 254
T. M. Hauske, R. J. Scannell, J. F. Bernardo Boston Edison Company
C. J. Wise, TIMET

Evaluation of Non-Polluting Biofouling Control Methods for Titanium Piping at NSWC/Dania, FL 276
Scott Hoover, Naval Surface Warfare Center, Dahlgren Division
Dr. Joanne Jones-Meehan, Naval Surface Warfare Center, Dahlgren Division
Dr. Marianne Walch, Naval Surface Warfare Center, Dahlgren Division
Dr. Brenda J. Little, Naval Research Laboratory/Code 7333 Stennis Space Center
Robert W. Erskine, Ingalls Shipbuilding

Evaluation of Thin Wall Titanium Piping as a Candidate Material for Seawater Cooling Systems on Board Surface Ships ... 288
Scott M. Hoover, Dr. Joanne Jones-Meehan, Regis Conrad and Milton Scaturro,
Naval Surface Warfare Center

A New Weldable Titanium Alloy with High Damage Tolerance 296
Paul J. Bania and Paul G. Allen, TIMET, HTL

Resista-Clad Plate: Clad Plate Technology for Ductwork, Chimney Liners, and Absorbers in FGD Units 304
Mark A. Philips, SPF Corporation of America

Stress Corrosion Testing of Pd-Containing Titanium Alloys for Geothermal Applications ... 315
James S. Grauman, TIMET
INDUSTRIAL, Continued
Titanium Alloy Fasteners: "Technically Correct" for the Marine Environment.. 316
 Kurt Faller, B&G Manufacturing Company

Titanium in Commercial Water Heaters.. 329
 Howard Bare, REPCO Engineering, Inc.
 James S. Grauman, TIMET

Titanium For Condenser Service... 333
 John A. Mountford, Jr., TIMET

Titanium in an Environmentally Concerned World.. 345
 Edward Nelson, The Marketing Department, Inc.

Western Europe Titanium Demand and Supply Outlook................................. 346
 Larry M. Rinek, SRI International

MEDICAL
The Application of TiNi45Cu5 Shape Memory Alloy in the Living Beings - Loaded Chamber............................. 362
 Hu Yaojun, Ling Qiyun, Deng Ju and Luo Guozheng, Northwest Institute
 for Nonferrous Metal Research

Development of a New Medical Implant Alloy.. 367
 Kenneth P. Daigle, P.E., Smith & Nephew Richards
 Paul Kovacs, Ph.D., Smith & Nephew Richards
 Ajit Mishra, Ph.D., Smith & Nephew Richards
 James A. Davidson, Ph.D., Smith & Nephew Richards

High Strength, Wear Resistant Tiadyne 3510 Alloy Development.................... 376
 H. Rob Henson and Gary L. Kneisel, Teledyne Wah Chang

Low Modulus, High Strength, Biocompatible Titanium Alloy for Surgical Implants ... 383
 Dr. K. Wang, L. Gustavson, Dr. J. Dumbleton, Howmedica Inc.

A New Titanium Alloy for Surgical Implant Applications: TIMETAL 21SRx 395
 J. C. Fanning, TIMET Technical Laboratory

PROCESSING
Casting of 16 MT Titanium Slabs in an Electron Beam Furnace........................ 403
 Charles H. Entrekin and Howard R. Harker, Titanium Hearth Technologies

Continuous Production of Titanium Powder... 412
 S. J. Gerdemann, L.L. Oden, and J.C. White, US Bureau of Mines

Emerging Surface Technologies as Applied to Titanium Alloys....................... 413
 James R. Treglio, PhD, ISM Technologies, Inc.
 Anthony J. Perry, PhD, DSc, ISM Technologies, Inc.
 Robert J. Stinner, ISM Technologies, Inc.
PROCESSING Continued

High Speed - High Productivity Machining of Titanium Alloys Using the Jet Assisted ... Dr. F. C. Schoenig, Jr., A. J. Atherton, Jr., Advanced Manufacturing Center

Hot Wire Gas Tungsten Arc Welding of Titanium for Offshore Oil Recovery .. David J. Crement, Precision Components Corporation

Liquid Interface Diffusion (LID) Bonding .. Dr. Brian Norris, Rohr, Inc.

The Potential of Ruthenium as an Alloying Element in Titanium .. Elma van der Lingen and Dr. Herman de Villiers Steyn, Mintek

Recycle of Waste Products from Titanium Components Manufacture .. Dr. Joseph A. Megy, CM Tech, Inc. and Jamegy, Inc.