Hydropower '97

Edited by

E. BROCH & D. K. LYSNE
The Norwegian University of Science and Technology, Trondheim, Norway

N. FLATABØ
Norwegian Electric Power Research Institute, Trondheim, Norway

E. HELLAND-HANSEN
Norconsult International AS, Sandvika, Norway
Table of contents

Preface XIII
Acknowledgements XIV
Organization XV

1 Hydropower in the environmental context

Application and comparison of computer models for quantifying impacts of river regulation on fish habitat
K.Alfredsen, W.Marchand, T.H.Bakken & A.Harby 3

Dulyn/Eigiau water transfer project – Integration of environmental issues
J.V.Baxendale 11

Planning and design of desilting basins in Himalayas – A case study
J.Chandrashekhar & A.Rengaswamy 17

Environmental aspects of the Lower Kihansi Hydropower Project, Tanzania
J.H.Gerstle, S.L.Mhaville & J.Lindemark 23

The EIA process: A multi-dimensional perspective
E.Helland-Hansen 33

Economic aspects of removal of sediment from reservoirs
T.Jacobsen 39

Hydropower and environment: Decision making in Norway
H.Kaasa 47

Weir construction as environmental mitigation in Norwegian hydropower schemes
J.H.L'Abée-Lund & J.E.Brittain 51

A framework for a 3D numerical model for hydropower reservoir water quality
N.R.B.Olsen 55

Fish bypass channels: Design parameters, evaluation, discharge, costs of construction and operation
B.Pelikan 61
Hydropower projects and environmental impact analysis
S.Rajani

The proposed controversial Upper Kotmale Hydro Power Project in Sri Lanka and its environmental and technical aspects
N.Rupasinghe

Environmental issues block hydroelectric project: A case study of Baspa-I Hydroelectric Project
R.C.Sharma, S.P.Bansal & V.Attri

Austria’s hydropower and its importance to the environment
W.Steininger

Split & settle – A new concept for underground desanders
H.Stôle

First world development in a third world environment: The challenges and solutions to environmental impact mitigation during construction phases of hydropower projects in Tanzania, East Africa
P.A.McCauley Terhell

Hydropower development in harmony with environment
N.Visvanathan & U.Bhat

Hydro power and environment problems in Lithuania
J.Vycius

Neelum-Jhelum hydroelectric project – Environmentally sound hydropower
D.A.Wright & M.A.Malhi

Resettlement methods at Lianhua Hydropower Station of China
Yong Zhao

The Shi Sanling pumped storage power plant and its environment
Zhao Zheng, Liang Hai-Bo & Wu Xiao-Feng

Environmental issues of Three Gorges Project
Dexiang Zhu

2. Hydropower in mixed systems

Coordinated operation of a hydrothermal power system: The case of Nepal
D.B.Basnyat & A.D.Gupta

Game model for optimizing a river regulation plan
Qiguang Chen & Changming Wang

Temperature dependency of demand in mixed hydro-thermal systems
G.L.Doorman & B.Mo

Norway: Europe’s pumped-storage system – Necessary modifications of power plants
A.Elström
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The value of hydropower import into a thermal system</td>
<td>181</td>
</tr>
<tr>
<td>P.B. Eriksen & J. Pedersen</td>
<td></td>
</tr>
<tr>
<td>Long to short term operation planning and modelling of hydro thermal power systems</td>
<td>187</td>
</tr>
<tr>
<td>B.A. Flechner & H. Wolter</td>
<td></td>
</tr>
<tr>
<td>Portfolio management in a deregulated hydropower based electricity market</td>
<td>197</td>
</tr>
<tr>
<td>S.-E. Fleten, W.T. Ziemba & S.W. Wallace</td>
<td></td>
</tr>
<tr>
<td>Model experiment of steel lining and reinforced concrete back penstock in the Three-Gorge Hydropower Station</td>
<td>205</td>
</tr>
<tr>
<td>Xiong De-yan, Fu Yi-shu, Ma Shan-ding, Gong Guo-zhi, Wu Han-ming, Yang Xue-tang & Yang Yao</td>
<td></td>
</tr>
<tr>
<td>A case of hydro scheduling with a stochastic price model</td>
<td>211</td>
</tr>
<tr>
<td>A. Gjelsvik, M.B. Belsnes & M. Haaland</td>
<td></td>
</tr>
<tr>
<td>Neural network based simulation tool for improving the control of hydro cascade system</td>
<td>219</td>
</tr>
<tr>
<td>R. Golob, D. Grgić & T. Štokelj</td>
<td></td>
</tr>
<tr>
<td>Stochastic optimization of weekly generation schedules: Solution of the hydraulic subproblems with interior point methods</td>
<td>227</td>
</tr>
<tr>
<td>J.-P. Goux, A. Renaud, S. Brignol & J.-C. Culioli</td>
<td></td>
</tr>
<tr>
<td>Analysis on selection of pumped storage plant in North China</td>
<td>235</td>
</tr>
<tr>
<td>Liang Hai-bo, Gu Zhao-qi, Ma Ji-ming & Zhang Ming</td>
<td></td>
</tr>
<tr>
<td>Benefit of capacity expansion in hydropower stations in view of power exchange contracts and transmission grid utilization</td>
<td>239</td>
</tr>
<tr>
<td>K.S. Hornnes, O.S. Grande & T.G. Borg</td>
<td></td>
</tr>
<tr>
<td>The challenge of hydro-thermal scheduling in a deregulated power market regime</td>
<td>245</td>
</tr>
<tr>
<td>A. Johannesen</td>
<td></td>
</tr>
<tr>
<td>Incorporation of thermal stochastic elements into a hydro-thermal model</td>
<td>251</td>
</tr>
<tr>
<td>C. Jørgensen & H.F. Ravn</td>
<td></td>
</tr>
<tr>
<td>An optimization model for regional generation scheduling at Hydro-Québec</td>
<td>259</td>
</tr>
<tr>
<td>L. Lafond</td>
<td></td>
</tr>
<tr>
<td>Tuning the planning chain of hydroelectric systems</td>
<td>267</td>
</tr>
<tr>
<td>C.L. Corrêa de Sá Jr & C. Lyra Filho</td>
<td></td>
</tr>
<tr>
<td>Evaluating hydro expansion or refurbishment in a deregulated electricity market</td>
<td>271</td>
</tr>
<tr>
<td>A. Haugstad, B. Mo & M. Belsnes</td>
<td></td>
</tr>
<tr>
<td>Integrating long- and short-term models for hydro scheduling</td>
<td>279</td>
</tr>
<tr>
<td>B. Mo, A. Haugstad & O.B. Fasso</td>
<td></td>
</tr>
<tr>
<td>Estimation of the economical and operational impacts of a HVDC-link between Norway and a continental power system</td>
<td>287</td>
</tr>
<tr>
<td>T.J. Larsen, S. Nießen & H.J. Haubrich</td>
<td></td>
</tr>
<tr>
<td>Daily generation planning of a hydro dominated hydrothermal system</td>
<td>293</td>
</tr>
<tr>
<td>O. Nilsson & L. Söder</td>
<td></td>
</tr>
</tbody>
</table>
3 Dam safety and risk analysis

Performance as an indicator of the safety of arch dams with special reference to the wide spanned arch dam Sta. Maria

P.Beyeler, W.Hauenstein, P.Lier & B.Otto

A role for risk assessment in dam safety management

D.S.Bowles, L.R.Anderson & T.F.Glover

Experience of failure mode, effect and criticality analysis on UK hydropower schemes

C.Beak, J.W.Findlay & D.L.Aikman

Some problems discussed in design of the Three Gorges Project

Gu Zhao-Qi, Peng Shou-Zhuo, Cai Jun-Mei, Ma Ji-Ming, Zhang Ming, Liang Hai-Bo & Guo Jian-Jun

Stability analysis of rock foundation of a plant dam section

Zhang Ming, Peng Shou-Zhuo & Gu Zhao-Qi

Credibility and defensibility of dam safety risk analyses

D.N.D.Hartford & G.M.Salmon

Evaluating the probability of failure of an earth dam by seismically induced liquefaction

D.N.D.Hartford, K.Y.Lum, M.K.Lee & R.A.Stewart

Rehabilitation of the intake structures at the Verse Dam, Germany

C.Heitefuss & H.-J.Kny

Incorporating risk analysis in dam emergency planning

L.Jenssen
Mohale CFRD, design considerations
P. Johannesson, C. Gratwick & S. Nthako

Risk analyses of three Norwegian rockfill dams
P. M. Johansen, S. G. Vick & C. Rikartsen

Dam safety legislation and guidelines – A UK perspective
J. P. Millmore & T. A. Johnston

Seismic risk analysis of concrete gravity dams – Problems and solutions
D. S. Kisliakov

Numerical modelling of 2-dimensional dam-break flow
J. P. Laasonen

Ice in spillways in connection with dam safety
L. Lia

Hydrodynamic forces from steep waves in rivers
A. Løvoll

Large scale model test on the hydraulic properties of different types of inlets to the penstock
Ma Liming & Liu Dechao

Hydraulic prototype observation of Geheyen Hydropower Station
Ning Tingjun, Cheng Yuanqing & Wang Shipeng

Dam safety and risk analysis – Experience of E. S. B. Ireland
J. D. O’Keeffe

A 3-dimensional numerical model for determination of spillway capacity
N. R. B. Olsen & H. M. Kjellesvigg

Visco-plastic analysis for the lock slope of the Three-Gorge Project
Peng Shou-Zhuo & Guo Jian-Jun

Meadowbank Dam spillway review – A case study in the use of risk analysis and non-structural solutions
L. Polglase

A new approach to probable maximum flood studies
J. D. Cattanach, W. Q. Chin & G. M. Salmon

Estimating the magnitude and probability of extreme floods
G. M. Salmon, W. Q. Chin & V. Plesa

The dam safety business
N. P. Robins & G. A. Weller

The hydraulic problems existing in Xiaolangdi hydraulic project

Parameter uncertainty in modelling dam breach and its flood
J. X. L. Yang
4 Tunnelling and underground works

Development of tunnelling technology in Nepal by use of local resources
P.P.Adhikari

A new method for in situ determination of the roughness coefficient of the hydropower plant tunnels
P.Boeriu & V.Doandes

Hydraulic jacking tests for unlined high pressure tunnels
E.Broch, T.S.Dahlø & S.E.Hansen

Ertan hydroelectric project: Experiences during construction
Qian Yang, P.K.Edvardsen & K.J.Carstens

Rehabilitation in the unlined rock tunnels of Nedre Røssåga after 40 years of operation
T.Carstens, S.E.Hansen & B.Undrum

Shotcrete-lined hydropower tunnels
S.Elfman

Optimal design of hydropower plants
J.Eliasson, P.Jensson & G.Ludvigsson

Monitoring survey and feedback analysis of underground powerhouse of Ming Tombs pumped storage plant
Liang Hai-Bo, Gu Zhao-Qi, Zhang Ming & Ma Ji-Ming

TBM-tunnelling at Sauda Power Project
H.Moe, H.Holen, E.D.Johansen & B.Aspen

Rebuilding of the 70 years old Nore 1 Power Plant
J.Hope, A.Palmstrøm & K.Finnerud

Rock mechanical engineering to the design of the underground tunnelling works of Bakun River diversion project in Sarawak, Malaysia
W.R.Jee & J.J.Choi

Stability study of an underground power cavern in sandstone
Weicheng Jin, M.Lu & E.Broch

Modeling and back analysis for a large scale underground powerhouse complex
Zhong-Kui Li, Ai-Min Wang & Xing-Hua Muo

Head losses due to air pockets in hydropower tunnels
E.Tesaker & S.Lunde

Prediction of rock support in Melamchi Tunnel, Nepal
P.Pradhan

New method for estimation of head loss in unlined water tunnels
P.-E.Rønn & M.Skog

Economic design of hydropower tunnels
P.-E.Rønn & M.Skog
Floor paving in unlined hydropower tunnels
Ø. Solvik & E. Tesaker

Unlined invert impact on the free-flow tunnels drainage capacity
V. D. Tashev & K. T. Daskalov

Method of calculating pressure transferred by soft layer surrounding penstock
Yao Shuang-Xi, Gu Zhao-Qi & Liang Hai-Bo

Author index