TABLE OF CONTENTS

VOLUME 1

PWR - Primary Side

Phenomenon Analysis of Stress Corrosion Cracking in the Vessel Head Penetrations of French PWR's
C. Pichon, D. Buisine and C. Faidy; Electricité de France; A. Gelpi and M. Vaindirlis, FRAMATOME ... 1

Stress Corrosion Cracking of Welded Alloy 600 Penetration Mockups
J. M. Sarver, Babcock & Wilcox Research & Development Division, Alliance, Ohio; R S. Pathania, Electric Power Research Institute, Palo Alto, California; K. Stuckey and S. Fyfitch, B&W Nuclear Technologies, Lynchburg, Virginia; A. Gelpi and M. Foucault, FRAMATOME, Paris La Defense, France; E. S. Hunt, Dominion Engineering, McLean, Virginia ... 13

Initial Results of Alloy 600 Crack Growth Rate Testing in a PWR Environment
John Paul Foster, Westinghouse Electric Corporation, Science and Technology Center, Pittsburgh, Pennsylvania; Warren H. Bamford, Westinghouse Electric Corporation, Pittsburgh, Pennsylvania; Raj S. Pathania, Electric Power Research Institute, Palo Alto, California ... 25

Stress Corrosion Cracking Behavior of Alloy 600 in High Temperature Water
G. L. Webb and M. G. Burke, Westinghouse Electric Corporation, Bettis Laboratory, West Mifflin, Pennsylvania ... 41

Accelerated Steam Plus Hydrogen Tests for Alloy 600 Wrought and Welded Specimens

Weldability Testing of Inconel™ Filler Materials
Ben B. Hood, Nuclear Service Division, Westinghouse Electric Corporation, Pensacola, Florida; Wangen Lin, Edison Welding Institute, Columbus, Ohio ... 69

Evaluation of Weld Metal 82 and Weld Metal 152 Stress Corrosion Cracking Susceptibility

Grain Boundary Defects Initiation at the Outer Surface of Dissimilar Welds: Corrosion Mechanism Studies
O. de Bouvier and B. Yriex, Electricité De France Research and Development Division, Materials Studies, Moret sur Loing, France ... 93

Corrosion Testing of Laser Welded Sleeve Mockups
Raymond A. Leasure and Robert E. Gold, Westinghouse Electric Corporation, Nuclear Services Division, Madison, Pennsylvania; Richard J. Jacko, Westinghouse Electric Corporation, Science and Technology Center, Pittsburgh, Pennsylvania ... 105

Circumferential Cracking of Steam Generator Tubes Repaired by Mechanical sleeving
J. Stubbe, E. Pierson, C. LAire, and L. Zur Nedden, Laborelec, Linkebeek, Belgium; P. Somville, Tractebel, Bruxelles, Belgium; P. Van Royen, Electrabel, Kerncentrale Doel, Doel, Belgium ... 115
TABLE OF CONTENTS

PWSCC Susceptibility Evaluation of Mill Annealed Alloy 600 SG Tubings Using Mock-up Specimens in Lithium Enhanced 360°C Water

The Effect of Carbon Distribution on Deformation and Cracking of Ni-16Cr-9Fe-C Alloys
Jason L. Hertzberg, University of Michigan, Department of Materials Science and Engineering, Ann Arbor, Michigan; Gary S. Was, University of Michigan, Departments of Nuclear Engineering and Materials Science and Engineering, Ann Arbor, Michigan .. 139

Characterization of Oxide Scales from Loviisa Units 1 and 2
Pertti Aaltonen and Kari Mäkelä, VTT Manufacturing Technology, VTT, Finland; Thomas Buddas, Loviisa Power Plant, Loviisa, Finland .. 151

Evaluation of Zinc Addition to PWR Primary Coolant
Raj Pathania and Suresh Yagnik, Electric Power Research Institute, Palo Alto, California; Robert E. Gold, Westinghouse Electric Corporation, Madison, Pennsylvania; Mason Dove, Southern Nuclear Co., Birmingham, Alabama; Erik Kolstad, OECD Halden Reactor Project, Halden, Norway .. 163

PWR - Secondary Side

Model Boiler Testing to Evaluate Inhibitors for Caustic Induced Stress Corrosion Cracking of Alloy 600 Tubes
Jacques Daret, Commissariat à l’Energie Atomique, LETC-Etablissement Cogéma de La Hague, Beaumont -Hague Cedex, France; J. Peter N. Paine, Electric Power Research Institute, Palo Alto, California; Michael J. Partridge, Dominion Engineering Inc, McLean, Virginia .. 177

IGA/SCC Crack Propagation Rate Measurements on Alloy 600 SG Tubing and Evaluation of Crevice Environments Using a Side Stream Model Boiler

Interaction of Lead with Nickel-Base Alloys 600 and 690
D. Costa, H. Talah and P. Marcus, Laboratoire de Physico-Chimie des Surfaces, CNRS, URA 425, Ecole Nationale Supérieure de Chimie de Paris, Paris, France; M. Le Calvar and A. Gelpi, FRAMATOME, Paris La Défense, France .. 199

Embrittlement of Alloy 400 by Lead in Secondary Side Steam Generator Environments
M.D. Wright and F. Peca, Heat Exchanger Technology Branch, Chalk River Laboratories, Chalk River, Ontario, Canada; G. Goszczynski, Reactor Chemistry Branch, Chalk River Laboratories, Chalk River, Ontario, Canada, (currently CNER, Fredericton, New Brunswick) .. 209

Comparative Behavior of Alloys 600, 690 and 800 in Caustic Environments
François Vaillant, Denis Buisine, and Béatrice Prieux, EDF, R & D Division, Materials Department, Moret sur Loing, France .. 219

Lead Induced Stress Corrosion Cracking of Alloy 690 in High Temperature Water
Koo Kab Chung, Korea Institute of Nuclear Safety, Taejon, Republic of Korea; Jae Kyu Lim, Chonbuk University, Faculty of Technology, Chonju, Republic of Korea; Shinichi Moriya, Yutaka Watanabe, Tetsuo Shoji, Tohoku University, Faculty of Technology, Research Institute for Fracture Technology, Aoba-ku, Sendai, Japan .. 233
TABLE OF CONTENTS

Some Considerations About the Possible Mechanisms of Lead Assisted Stress Corrosion Cracking of Steam Generator Tubing
Max Hélie, Irma Lambert, and Gérard Santarini, Commissariat à l'Energie Atomique, SCECF/LCAE, Fontenay-aux-Roses, France ... 247

Laboratory Study Of Corrosion Of Steam Generator Tubes: Preliminary Results
B. Sala and M. Organista, Centre Technique FRAMATOME, Département Chimie-Corrosion, Le Creusot, France; K. Henry and R. Erre, CNRS-CRMD, Orléans, France; A. Gelpi, FRAMATOME, Département Matériaux et Technologies, Paris la Defense, France; F. Cattant and M. Dupin, EDF-EPN GDL/SCMI, Avoine, France ... 259

SCC of Alloy 600 in Complex Caustic Environments
M.T. Miglin, J.V. Monter, C.S. Wade and M.J. Psaila-Dombrowski, Babcock & Wilcox Research and Development Division, Alliance, Ohio; A.R. McIlree, Electric Power Research Institute, Palo Alto, California ... 277

Clarification of Stress Corrosion Cracking Mechanism on Nickel Base Alloys in Steam Generators for Their Long Lifetime Assurance
Hiroo Nagano and Haruhiko Kajimura, Research and Development Center, Sumitomo Metal Industries Ltd, Amagasaki, Japan ... 291

How to Simulate Acid Corrosion of Alloy 600 Steam Generator Tubes
Etienne Pierson and Jacqueline Stubbe, Laborelec, Linkebeek, Belgium; William H. Cullen and S.M. Kazanjian, Materials Engineering Associates, Inc., Lanham, Maryland; Peter N. Paine, Electric Power Research Institute, Palo Alto, California ... 303

Mechanism and Effectiveness of Inhibitors for SCC in a Caustic Environment
J.B. Lumsden and S.L. Jeanjaquet, Rockwell Science Center, Thousand Oaks, California; J. Peter N. Paine, Electric Power Research Institute, Palo Alto, California ... 317

Effect of the Surface Film Electric Resistance on Eddy Current Detectability of Surface Cracks in Alloy 600 Tubes
Timo Saario, VTT Manufacturing Technology, VTT, Finland; J. Peter N. Paine, Electric Power Research Institute, Palo Alto, California ... 327

Effect of Boric Acid on Intergranular Corrosion and on Hideout Return Efficiency, of Sodium in the Tube Support Plate Crevices
J. Peter N. Paine and Carlyle E. Shoemaker, Electric Power Research Institute, Palo Alto, California; Jean-Louis Campan, Jean-Paul Brunet, and Patricia Schindler, Commissariat à l'Energie Atomique, C.E. CADARACHE, St Paul Lez Durance, France; Agnes Stutzmann, Electricité de France, St Denis, France ... 339

Laboratory Examinations of OTSG Tubes from Crystal River Unit 3
P. A. Sherburne, B&G Nuclear Technologies, Lynchburg, Virginia; K. R. Redmond and L. P. Sykes, B&G Nuclear Environmental Services, Lynchburg, Virginia; R. H. Thompson, Florida Power Corporation, Crystal River, Florida; J. Peter N. Paine, Electric Power Research Institute, Palo Alto, California ... 351

Modeling and Field Studies of Fouling in Once-Through Steam Generators
Rocky Thompson, Florida Power Corporation, Crystal River, Florida; Tina Gaudreau, GEBCO Engineering, Inc., Sebastopol, California ... 363
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hideout of Sea Water Impurities in Steam Generator Tube Deposits</td>
<td>P. V. Balakrishnan and C. W. Turner, AECL, Chalk River Laboratories, Chalk River, Ontario, Canada; Rocky Thompson, Florida Power Corporation, Crystal River Energy Complex, Crystal River, Florida; Steve Sawochka, NWT Corporation San Jose, California</td>
<td>375</td>
</tr>
<tr>
<td>Characterization of the Secondary Side Deposits of Pulled Steam Generator Tubes</td>
<td>Charles Laire, Gérard Platbrood and Jacqueline Stubbe, Laborelec, Linkebeek, Belgium</td>
<td>387</td>
</tr>
<tr>
<td>Characterization of Deposits in Dampierre-I Steam Generator Support Plate Crevices</td>
<td>Leopold Albertin, Pittsburgh, Pennsylvania; François Cattant, EDF Central Laboratories, Avoine, France; Allen Baum and Peter Kuchirka, Westinghouse Electric Corp., Madison, Pennsylvania</td>
<td>399</td>
</tr>
<tr>
<td>Byron Unit 1 High Temperature Chemical Cleaning</td>
<td>W.A. Scheffler and S.R. Kerr, Commonwealth Edison Company, Byron Nuclear Station, Byron, Illinois; R.P. Dow, B&W Nuclear Technologies, Lynchburg, Virginia; J. M. Jevec, Babcock & Wilcox, Alliance Research Center, Alliance, OH</td>
<td>435</td>
</tr>
<tr>
<td>Pitting Resistance of Alloy 800 as a Function of Temperature and Prefilming in High Temperature Water</td>
<td>Bernhard Stellwag, Siemens Power Generation (KWU), Erlangen, Germany</td>
<td>453</td>
</tr>
<tr>
<td>Role of Microstructure in Caustic Stress Corrosion Cracking of Alloy 690</td>
<td>D. A. Mertz, P. T. Duda, P. N. Pica and G. L. Spahr, Bettis Atomic Power Laboratory, Westinghouse Electric Corporation, West Mifflin, Pennsylvania</td>
<td>477</td>
</tr>
<tr>
<td>Effect of Sulfur and Magnesium on Hot Ductility and Pitting Corrosion for Inconel 690 Alloy</td>
<td>Kui Liu, Bingda Zhang and Shunnan Zhang, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China; Ziyong Zhu, Institute of Corrosion and Protection of Metals, Chinese Academy of Sciences, Shenyang, China</td>
<td>509</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

BWR - Austenitic Alloys

The Effect of Cold Work on the SCC Susceptibility of Austenitic Stainless Steels
Motoji Tsubota and Yutko Kamazawa, Heavy Apparatus Engineering Laboratory, Toshiba Corporation, Yokohama, Japan; Hitoshi Inoue, Nuclear System Designs & Eng. Dept., Toshiba Corporation, Yokohama, Japan .. 519

Characterization of Sensitization and Stress Corrosion Cracking Behavior of Stabilized Stainless Steels under BWR Conditions
Renate Kilian, Siemens AG, Power Generation Group, Erlangen, Germany; Günther Brümmer, Hamburgische Elektricitäts Werke AG, Hamburg, Germany; Ulf Ilg, Badenwerk AG, Karlsruhe, Germany; Vinzens Meir, Bayenwerk AG, Munchen, Germany; Heinz Teichmann, RWE-Energic AG, Essen, Germany; Otto Wachter, Preussen Elektra AG, Hannover, Germany ... 529

Crack Growth Rates of Alloy 182 in High Temperature Water
M. Itow, Y. Abe and A. Sudo, Toshiba Corporation, Nuclear Engineering Laboratory, Yokohama, Japan; T. Kaneko, Toshiba Corporation, Nuclear Energy Division, Yokohama, Japan .. 541

Crack Propagation in Stainless Steels and Nickel Base Alloys in a Commercial Operating BWR
Anders Jenssen, ABB Atom, Västerås, Sweden; Bengt Bengtsson, OKG AB, Oskarshamn Nuclear Power Plant, Figgelholm, Sweden; Ulf Morin, Sydkraft Konsult AB, Carl Gustavs väg 4, Malmö, Sweden; Christer Jansson, Vattenfall Energisystem AB, Vällingby, Sweden ... 553

Application of Noble Metal Technology for Mitigation of Stress Corrosion Cracking in BWRs
Peter L. Andresen, GE Corporate Research and Development Center, Schenectady, New York .. 563

BWR - Austenitic Alloys/Water Chemistry

Characterization of the Roles of Electro-chemistry, Convection and Crack Chemistry in Stress Corrosion Cracking
Peter L. Andresen and Lisa M. Young, GE Corporate Research & Development, Schenectady, New York .. 579

Influence of Sulfate Transients on Crack Growth in Type 304 Stainless Steel in Water at 288°C
Per Lidar, Studsvik Material AB, Nyköping, Sweden .. 597

The Effects of Nitrate on the Stress Corrosion Cracking of Sensitized Stainless Steel in High Temperature Water
Peter L. Andresen, GE Corporate Research and Development Center, Schenectady, New York .. 609

Photoelectrochemical Protection of Stainless Alloys from the Stress-Corrosion Cracking in BWR Primary Coolant Environment
Masatsune Akashi, Hiroyuki Iso-o, Nobuhiko Kubota, Takanori Fukuda, and Muneo Ayabe, Ishikawajima-Harima Heavy Industries Co., Ltd. (IHI), Research Institute, Tokyo, Japan; Kenji Hirano, Yokohama Engineering Center, Yokohama, Japan .. 621

BWR Plant-to-Fleet Water Chemistry Trends - Past and Present
V. F. Baston, L.L. Sundberg, and J. M. Huff, GE Nuclear Energy, San Jose, California .. 629

Using Materials Research Results in New Regulations - The Swedish Approach
Karen Gott, The Swedish Nuclear Power Inspectorate, Stockholm, Sweden .. 639