Electromagnetic Environments
and
Consequences

Proceedings of the European Electromagnetics International Symposium
on
Electromagnetic Environments and Consequences

EUROEM 94
Bordeaux - France, May 30 31, June 1 2 3, 1994

PART 2

Edited by

Dominique, Joseph SERAFIN Centre d'Etudes de Gramat - Gramat - France
Didier, Pierre DUPOUY Centre d'Etudes de Gramat - Gramat - France
Jean-Charles BOLOMEY Université de Paris XI - SUPELEC - Gif/Yvette - France
Table of Contents

VOLUME II

Chapter 10: Numerical Methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>F.D.T.D. Method Coupled with Non Orthogonal Coordinate System</td>
<td>J.-M. Barres, C. Faure, J. Chandezon, B. Pecqueux, R. Vezinet</td>
<td>865</td>
</tr>
<tr>
<td>10.2</td>
<td>Analysis of Retarded Time Finite Difference Techniques</td>
<td>J.L. Gilbert</td>
<td>873</td>
</tr>
<tr>
<td>10.3</td>
<td>Dispersion and Accuracy in Finite Difference Calculations</td>
<td>J.L. Gilbert</td>
<td>880</td>
</tr>
<tr>
<td>10.4</td>
<td>Towards an Integrated FDTD/Electromagnetic Topology Tool</td>
<td>J. Lovetri, D. Mardare</td>
<td>888</td>
</tr>
<tr>
<td>10.5</td>
<td>Adaptive Meshing in 3D for the FDTD Algorithm and Application to Aperture Problems</td>
<td>S. Taylor</td>
<td>896</td>
</tr>
<tr>
<td>10.6</td>
<td>Modeling of EM Waves Penetration Through Slots and Seams</td>
<td>J.-N. Tixier, T. Rudolph, B. Pecqueux, R. Vezinet</td>
<td>904</td>
</tr>
<tr>
<td>10.7</td>
<td>Extension of Thin Slot Formalism for Slots of Complicated Shape</td>
<td>I.B. Baholdin, N.I. Kozlov, A.I. Kondrat’Eva</td>
<td>913</td>
</tr>
<tr>
<td>10.8</td>
<td>Extension of Time-Domain Surface Impedance Concept to Dispersive Media</td>
<td>S. Kellali, A. Reineix, Ph. Leveque, B. Jecko</td>
<td>917</td>
</tr>
<tr>
<td>10.9</td>
<td>Measured Equation of Invariance and its Application in Frequency and Time Domain</td>
<td>K.K. Mei</td>
<td>925</td>
</tr>
<tr>
<td>10.10</td>
<td>Field Penetration in Complex Objects by an Hybrid Finite Element / Geometrical Theory of Diffraction Method</td>
<td>B. Roturier, B. Souny, H. Baudrand</td>
<td>933</td>
</tr>
<tr>
<td>10.12</td>
<td>Recent Developments in High Frequency Methods</td>
<td>R. Tiberio, S. Maci, A. Toccafondi, F. Capolino, A. Neto</td>
<td>949</td>
</tr>
<tr>
<td>10.14</td>
<td>Analysis of Electromagnetic Scattering from Finite Composite Structures</td>
<td>T.K. Sarkar</td>
<td>965</td>
</tr>
<tr>
<td>Chapter 10</td>
<td>Title</td>
<td>Author(s)</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>10.15</td>
<td>Integral Equations Technique in the Time Domain:</td>
<td>Y. BENIGUEL</td>
<td>969</td>
</tr>
<tr>
<td>10.16</td>
<td>MMP-3D: A Survey on Recent Improvements:</td>
<td>St. KIENER</td>
<td>977</td>
</tr>
<tr>
<td>10.18</td>
<td>Green's Function of Spherical Body:</td>
<td>D.M. VEUCKOVIC</td>
<td>990</td>
</tr>
<tr>
<td>10.19</td>
<td>Cylindrical Conductor Skin and Proximity Effect Characterization in a</td>
<td>A. AHMAD, M. KANE, Ph. AURIOL</td>
<td>995</td>
</tr>
<tr>
<td></td>
<td>Wide Range of Frequencies:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.20</td>
<td>Slit Cable Calculation:</td>
<td>D.M. VEUCKOVIC, A.M. DEKIC</td>
<td>1002</td>
</tr>
<tr>
<td>10.22</td>
<td>Beltrami-Moses Fields in Electromagnetism:</td>
<td>P. HILLION</td>
<td>1017</td>
</tr>
<tr>
<td>10.23</td>
<td>Modeling of a Waveguide in Dimension 2D by a Line: Some New Results:</td>
<td>F. TATOUT</td>
<td>1023</td>
</tr>
<tr>
<td>10.24</td>
<td>Numerical Simulation of Electromagnetic Wave Propagation in</td>
<td>O. VACUS, P. JOLY</td>
<td>1032</td>
</tr>
<tr>
<td></td>
<td>Ferromagnetic Materials:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.25</td>
<td>On Region of Validity of Shortwave Approach to a Plane Wave</td>
<td>M. POPOV, D. MAYSTRE, V. ZALIPAEV</td>
<td>1040</td>
</tr>
<tr>
<td></td>
<td>Diffraction by a Sinusoidal Grating:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.26</td>
<td>System-Theoretical Investigations on the Application of the</td>
<td>E. GRIESE</td>
<td>1047</td>
</tr>
<tr>
<td></td>
<td>Coupled-Wave Theory for the Diffraction Analysis of Dielectric</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gratings:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.27</td>
<td>Nonlinear Scattering of Electromagnetic Waves by Thin Near-Surface</td>
<td>I.G. KONDRA TEV, A.K. KOTOV</td>
<td>1055</td>
</tr>
<tr>
<td></td>
<td>Films:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chapter 11: Measurement Techniques

<table>
<thead>
<tr>
<th>Chapter 11</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1</td>
<td>Shielding Effectiveness Measurements Using Mode-Stirred Chambers:</td>
<td>S.H. GURBAXANI, T.A. LOUGHRY</td>
<td>1065</td>
</tr>
<tr>
<td>11.2</td>
<td>Measurement of the Parallel and Axial Transfer Impedances: Theory,</td>
<td>F. BROYDE, E. CLAVELIER</td>
<td>1072</td>
</tr>
<tr>
<td></td>
<td>Practical Methods & Results:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
11.3 Fiber-Optic Data Links for Electromagnetic Pulse and High Power Microwave Testing:
B.T. BENWELL .. 1081
11.4 Realization of a Measurement System for the Simultaneous Determination of the Six Components of an Electromagnetic Near Field for the Frequencies from 9 KHz to 70 MHz:
A. GILLE, K.-H. GONSECHREK, S. HELMERS, J.L. TER HASEBORG 1089
11.5 Broadband and Ultrasensitive Electromagnetic Sensors for NEMP, EMC and Lightning: Theory and Experimental Results:
F. PAMPALONE, G. EUMURIAN .. 1097
11.6 Infrared Images of Scattered Electromagnetic Fields from Scale-Model Aircraft:
J.D. NORGARD, J. SADLER, R. SEGA, W. PRATHER 1105
11.7 Time Domain Shielding Effect Measuring Techniques:
G. STRICKER, Ch. PFEILER, L. JENDERNALIK 1113
11.8 A Fully Automated Shielding Effectiveness Monitoring System for Continuous Operation Implementing a Digital Synchronous Detector Receiver:
F. BROYDE, E. CLAVELIER ... 1121
11.9 Microwave Characterization of Materials Having High Dielectric Constant by Use of Time Domain Analysis:
T-T NGUYEN, G. MAZE-MERCEUR, J. GARAT 1129
11.10 A Model with Resonators Applied to the Characterization of Heterogenous Materials:
S. LEFRANCOIS, D. PASQUET, G. MAZE-MERCEUR 1137
11.11 High Microwave Pulsed Power Measurement Using Hot Electron Phenomenon in Semiconductors:
Z. KANCLERIS, M. DAGYS, V. ORSEVSKI, R. SIMNISKIS 1145

Chapter 12: Simulation Techniques

12.1 Methods and Means of EMP Effects Investigations:
Y.V. PARFENOV ... 1153
12.2 Horizontally Polarized Dipole II Electromagnetic Pulse Simulator:
R.R. BLUNDELL ... 1159
12.3 Modifications to the 1-MV EMP Simulator at WWD BW:
H. SCHILLING, J. SCHLÜTER, K. NIELSEN, T. NAFF, J. HAMMON 1166
12.4 Behaviour and Optimization of Transmission Line NEMP Simulators:
O. DAFIF, A. REINEIX, B. JECKO, J-J. RODARO 1173
12.5 On the Use of GTEM Cells in EMP-Threat Testing:
J.M. JANISZEWSKI, T.W. WIECKOWSKI 1181
12.6 Using Low Level CW Testing in the Development of an Integrated Approach to Aircraft Testing:
N.J. CARTER .. 1188
12.7 Using Low Level CW Illumination to Predict High Power Microwave Effects:
 C.D. TAYLOR, S.L. LANGDON, S.J. GUTIERREZ ... 1199

12.8 Exploratory Investigation of EMP Environment and Metrological Support:
 L.N. IVANOV .. 1210

12.9 Electromagnetic Diagnosis Technique Using Spherical Near-Field Probing:
 F. THEROND, J-Ch. BOLOMEY, N. JOACHMOWICZ, F. LUCAS 1218

12.10 Flat Broadband Absorbers: Reflectivity Vs Site Attenuation:
 F. MAYER .. 1227

12.11 Optimizing Ferrite Tile Installations for Shielded Enclosure Anechoic Upgrades:
 E.F. DYER .. 1237

12.12 High Frequency Direct Drive Generation Using White Noise Sources:
 S. FRAZIER, K. SEBACHER, D. LAWRY, W.D. PRATHER, G.I. HOFFER, 1243
 S. KOKOROWSKI, D.P. McLEMORE .. 1243

12.13 Double bulk Current Injection: a Possible Substitute to Field-to-Wire Coupling:
 M. KLINGLER, M. SZELAG, M. HEDDEBAUT ... 1249

12.14 Compact Travelling-Wave ESD Simulator:
 L.M. MACLEOD, K.G. BALMAIN ... 1257

12.15 On the Conditions of Evaluating the Shielding Effectiveness in the Planewaves Region by Means of Coaxial Measuring Cells with TEM Mode:
 M.Th. BADIC, M-J. MARINESCU, C. PAUN ... 1265

12.16 Practical Applications of EMC Simulations in Product Design:
 A.D. SLEEPER ... 1275

Chapter 13: Statistical Techniques

13.1 Statistical Electromagnetic Field in Reverberating Chambers:
 P. CORONA, G. FERRARA, M. MIGLIACCI ... 1285

13.2 A Rationale for Developing and Using STEM (Statistical Electromagnetics):
 E.K. MILLER ... 1293

13.3 Indoor Propagation: a Statistical Approach:
 M.L. TOBIN, J.E. RICHIE ... 1301
Chapter 14: Signal Processing

14.1 On a Certain Filtering Approach to Target Discrimination:
S.L. PRIMAK, S.S. BRISKIN 1311

14.2 Investigations on the Equivalence of EMC Evaluations in Time and Frequency Domain Using Rule-Based Modelling:
L. JENDERNALIK, G. STRICKER, Ch. PFEILER 1317

14.3 Waveform Bounding and Combination Techniques for Direct Drive Testing:
E. PARIMUHA, S. FRAZIER, M. TUMMALA, Th. F. WINNENBERG 1325

14.4 EMP Signal Modal Analysis:
S. YVETOT, J-P. PERCAILLE, C. MAILHES 1333

14.5 Detection of Random Pulsed Processes in Locally Stationary Noise Under a Parametric a priori Uncertainty:
O.M. ISAEVA ... 1341

14.6 A Least Absolute Values Method for Adaptive Spatial Suppression of Interference in a Low Frequency Receiver:
P.V. GOREV ... 1347

14.7 On the Use of Minimum Phase Algorithm for Determining Response to UWB Sources:
S.H. GURBAXANI, V.E. MARTINEZ, C-S. D. LIN, T.S. BOWEN 1358

Chapter 15: Aircrafts and Spacecrafts

15.1 Assessing Aircraft Survivability to High Frequency Transient Threats:
E.M. PARIMUHA, S.J. FRAZIER, W. PRATHER, M. ANTLEY, D. McLEMORE 1361

15.2 Conception and Modelling of Aircraft Electromagnetic Simulators:
Y. RAINGEAUD, J. PAILLOL, J. ANDRIEU, A. REINEIX, B. JECKO 1367

15.3 Development of an Embedded Terminal Protection Device (TPD) Tester:
L.O. HOEFT, T.M. SALAS, W.D. PRATHER 1376

15.4 Automatic Test Bench for Terminal Protection Devices on Hardened Structures:
Y. GALLETY, J.C. REMAUD, J.L. LAIR 1384

15.5 HIRF-Testing of the SAAB 2000 & the JAS 39 Gripen Aircraft:
H. FRENNBERG, T. MARTIN, M. ERIKSSON, M. BÄCKSTRÖM, B. WAHLGREN 1392

15.6 E-6A Hardness Assurance, Maintenance and Surveillance Program:
W. DEPASQUALE, B. LUBOSCH, J. HAINES, M. MALLORY 1401

15.7 A Simulation Tool for ESD System Level Analysis on Board Space Platforms:
L. INZOLI, F. SVELTO, M. BANDINELLI, F. BESSI, S. CHITI, L. GIORGI 1405

15.8 Electrostatic Discharge Plasma Propagation and Interaction Modelling:
A. SOUBEYRAN, L. TALAALOUT, J.P. ESTIENNE 1412
Chapter 16: Antennas and R.C.S.

16.1 A Numerical Study of the PxM Radiator:
N.H. YOUNAN, B.L. COX, C.D. TAYLOR, W.D. PRATHER 1455

16.2 Induced Currents on Loaded and Shielded Antennas:
M. COURTOT ... 1463

16.3 Susceptibility of Log Periodic Dipole Arrays:
R. MOINI, R. AGHAJAFARI, A. TAVAKOLI 1470

16.4 A New Integral Equation Method for Thin-Wire Curvilinear Antennas Designing:
D.M. VELICKOVIC, D.M. PETKOVIC 1478

16.5 Optimizing the Radiated Pulse of Transient Antennas:
S.M. BOOKER, A.P. LAMBERT, P.D. SMITH 1484

16.6 Time Domain Near Field Antenna Measurements:
S.P. SKULKIN .. 1492

16.7 Radiation of Nonsinusoidal Waves by Aperture Antennas:
S.P. SKULKIN, V.I. TURCHIN ... 1498

16.8 Mutual Coupling in a Finite Planar Array of Circular Microstrip Antenna:
P.S. BHATTACHARJEE .. 1505

16.9 On Board Antennas Modelled by Using Simple Radiating Elements:
M.F. CATEDRA, M. DOMINGO, R.P. TORRES 1508

16.10 2D and 3D Finite Element Formulation for High Power Microwave Antennas:

16.11 A MM-GTD Analysis of Coupling & Radiation of Antennas on Resonant Size Bodies Modeled by Parametric Surfaces:
M.F. CATEDRA, L. VALLE, F. RIVAS 1521

16.12 Indoor Multipath Fading Reduction with an Adaptive Phased Array:
G.Y. DELISLE, T.A. DENIDNI ... 1529

16.13 The Receiver Antenna Pattern Effect in Multipath Propagation Environment:
M.G. SANCHEZ, L. DE HARO, A.G. PINO, M. CALVO 1537
Chapter 17: Transient Radar

17.1 Design of the "Mother Wavelet" - A Zero Mean Pulse of Finite Support in Time-Frequency Plane:
 T.K. SARKAR, S.M. NARAYANA, H. WANG, M. WICKS, M. SLAZAR-PALMA

17.2 Solution of Maxwell's Equations by Using Wavelet Concepts:
 T.K. SARKAR, L.E. GARCIA-CASTILLO, M. SALAZAR-PALMA, T. ROY, R. ADVE

17.3 K-Space Imaging Algorithms Applied to UWB SAR:
 S.R. CLOUDE, A. MILNE, P.D. SMITH, P. BELLAMY, C. THORNHILL

17.4 Ultra Wideband Radar: Current and Future Techniques:
 P.R. BELLAMY

17.5 Optimal Polarization States of Simple and Compound Targets:
 V. SAMPATH, G.Y. DELISLE, P. LUNEAU

17.6 Simple Analysis of Ultrashort Pulse Interaction with Matter:
 H. WILHELMSSON, J-H. TROMBERT, J-F. ELOY

17.7 Transient Scattering of EM-Pulses by Simple and Complex Targets in the Combined Time-Frequency Domain Using Impulse Radar:
 H.C. STRIFORS, S. ABRASHAMSON, B. BRUSMARK, G.C. GAUNAUD

Chapter 18: Electromagnetic Methods in Environmental Remediation

18.1 Magnetometric Detection of Buried Objects:
 K.F. CASEY, B.A. BAERTLEIN

18.2 Electromagnetic Methods for In-Situ Site Remediation:
 P.F. CARPENTER, R.S. KASEVICH

18.3 A Microwave Tomographic Equipment for Detecting Buried Objects:
 Ph. GARREAU, G. COTTARD, P. BERTHAUD, J.Ch. BOLOMEY
Chapter 19: Numerical Applications

19.1 A Method of Moments Strategy for Calculating the Radiated Electromagnetic Field from Complex Multilayer Boards:
 U. KELLER, S. ÖING, M. KÜNNE .. 1673

19.2 Fields Distribution Inside a Closed Guide Using the Finite Difference Method:
 H. ABDALLA Jr, R.N. ALMEIDA Jr., A.J.M. SOARES 1681

19.3 EMC in SMPS: a CAD Tool:
 J.E. FERNANDEZ, S. PIEDRA, J. BASTERRECHEA, M.F. CATEDRA 1689

19.4 Electromagnetic Modeling of a Power Module Case:
 E. CLAVEL, J-L. SCHANEN, J. ROUDET 1697

19.5 A Reliable Method to Study Cylindrical Waveguide TTC Antennas with Apertures:
 M.F. CATEDRA, J. BASTERRECHEA, J. DE FRUTOS, S. PIEDRA 1705

19.6 A GTD Approach to Obtain Radiation Patterns of Antennas on Bodies Modelled with NURBS Surfaces:
 M.F. CATEDRA, J. SAIZ, J. PEREZ, M.T. LOPEZ, O. CONDE, R. TORRES 1712

19.7 A Numerical Code to Analyze Wire Antennas on Complex Structures-Modelled with NURBS Surfaces Using the Method of Moments:
 M.F. CATEDRA, F. RIVAS, L. VALLE 1719

19.8 Study of Scattering and Radiation by Arbitrary Bodies of Revolution with CG-FFT Method:
 M.F. CATEDRA, S. PIEDRA, J. BASTERRECHEA 1727

19.9 Analysis of the Diffracting Centers of a Complex 3-Dimensional Structure:
 I. DE LEENEER, E. SCHWEICHER, A. BAREL 1735

19.10 Two-Dimensional Methods for Calculation of Magnetic Field Transmission Lines & Comparison with Measurement Values:
 LUIS ORTIZ N., R. FIGUEROA B. 1740

19.11 Numerical Modeling of Lightning Protection Systems:
 O. DAGUILLON, A. KARWOWSKI, A. ZEDDAM 1746

19.12 Indoor Electromagnetic Wave Propagation Measurements and Modelling:
 J. WIART ... 1754

19.13 Computer Aided Analysis of Infinite Waveguides:
 D. MULLER, L. NICOLAS, A. NICOLAS 1762

19.14 Evaluation of Vane Structures for Application in Miniature Traveling-Wave Tubes:
 A.H. QURESHI, T.M. WALLETT 1768

19.15 Modeling and Analysis of a Novel Tunnel Ladder Millimeter-Wave Structure:
 A.H. QURESHI, T.M. WALLETT 1776
Chapter 20: Hardening and Protection

20.1 NEMP Hardening - the Hardness Verification Procedure:
H. GRAUBY, J-C. BIOTTEAU .. 1787

20.2 Dedicated Measurement System for Qualification and Maintenance of Shielding Enclosures:
J.Y. TOUCHAIS .. 1793

20.3 Correlation Between Spectral Attenuation Data of Shelters Obtained with a New Fast EMP-Simulator and From Continuous Wave Experiments (MIL-STD 285):
G.J.J. REMKES, A. KRANHAND 1800

S.A. CLARK, Y.M. LEE, W.J. SCOTT 1806

20.5 Physical Analysis and Optimisation of Overvoltage Protection Crowbar Semiconductor Devices:
J-Y. DEPEE, R. EHLINGER, J-P. CHANTE 1814

20.6 Transient Response Analysis of Gas Arresters:
M.S. SARTO, J.L. TER HASEBORG 1822

20.7 SPICE Model of Excited Transmission Lines with Nonlinear Loads:
M. FELIZIANI, S. CELOZZI, K. BORGEEST 1830

20.8 Simulating the Frequency Response of Non-Linear Protection Circuits with Space:
K. BORGEEST, J.L. TER HASEBORG, F. WOLF 1838

20.9 Lightning and EMP Protection for Analog and Digital Signals:
G. GIRARD, B. ARZUR .. 1846

20.10 Shielding Effectiveness of Shielded Harnesses Terminated by Various Grounding Schemes:
C. GOLDSTEIN .. 1854

20.11 Microwave Interference Suppression Through Absorption:
N.K. AGRAWAL, C. KUMAR M.V., S.C. GUPTA 1862

20.12 EMI Control by Software for a RF Communication System:
G.K. SAHA, G.K. DEB .. 1870

Chapter 21: Biological Effects

21.1 Measurements of Electromagnetic Fields at the Workplace:
Aluminium Reduction Plant and Aluminium Casthouse (Electromagnetic Casting):
A.F. STEINEGGER .. 1879

21.2 Microwave Exposure of Forest Trees and Lichens:
P. SCHMUTZ, J.B. BUCHER, D. TARJAN, J. SIEGENTHALER, C. STAEGGER, M. URECH 1887
21.3 Effect of Low Level Radio Frequency Fields Modulated at Brain Wave Frequency on ATPase System of Developing Rats:
K.K.KUNJILWAR, J. BEHARI .. 1895

21.4 Ionic Conductivity as a Mechanism of Microwave Absorption by Biological Membranes:
G.I. OVTCHINNIKOVA, J.F. KOROSTELEVA 1900

21.5 Frequency Dependent Effects of PEMF on Cyanobacteria:
N. PEKARIC-NADJ, Z. OBERHT, V. DOSEN 1908

21.6 Rotational Electromagnetic Field Around Transmission Lines:
N. PEKARIC-NADJ, M. PRSA, V. KOJIC, V. DRAGIC 1911