Volume I

Contents

Preface

1. Fracture Energy, Strain Softening, and Fracture Toughness

Brokenshire D.R. and Barr B.I.G.,
A Comparative Study of GF Test Results 3

Uchida Y., Kurihara N., Rokugo K., and Koyanagi W.,
Determination of Tension Softening Diagrams of Various Kinds of Concrete by Means of Numerical Analysis 17

Ulfkjaer J.P. and Brincker R.,
Fracture Energy of Normal Strength Concrete, High Strength Concrete and Ultra High Strength Ultra Ductile Steel Fiber Reinforced Concrete 31

Arslan A., Schlangen E., and van Mier J.G.M.,
Effect of Model Fracture Law and Porosity on Tensile Softening of Concrete 45

Jefferson A.D. and Barr B.I.G.,
Unified Test Procedure for Evaluating the Fracture Characteristics of Concrete 55

Zhou F.P.,
Influence of Notch Size, Eccentricity and Rotational Stiffness on Fracture Properties Determined in Tensile Tests 65

Rocco C., Guinea G.V., Planas J., and Elices M.,
The Effect of the Boundary Conditions on the Cylinder Splitting Strength 75

Berra M. and Castellani A.,
Toughness of Old Plain Concretes 85

Planas J., Guinea G.V., and Elices M.,
Rupture Modulus and Fracture Properties of Concrete 95
2. Fracture Process Zone

Steiger T., Sadouki H., and Wittmann F.H.,
*Simulation and Observation of the Fracture Process Zone* 157

Feng N-Q., Ji X.-H., Zhuang Q.-F., and Ding J.-T.,
*Studies of the Length of Concrete Micro Crack Zone* 169

Guo Z.K., Kosai M., Kobayashi A.S., and Hawkins N.M.,
*Further Studies of the Fracture Process Zone Associated with Mixed Mode Dynamic Fracture of Concrete* 179

Kovler K.,
*Fracture Mechanics Characteristics at Crack Initiation and Propagation and their Dependence on Structure of Concrete* 189

Kitsutaka Y.,
*Fracture Parameters for Concrete Based on Poly-linear Approximation Analysis of Tension Softening Diagram* 199

Nomura N. and Mihashi H.,
*A Method to Evaluate Tension Softening Model for Concrete* 209

Zhou F.P.,
*A Method for Determining Fracture Properties of Concrete Through a Single Test* 219
3. Crack Formation Under Different Conditions

Słowiński V., Saouma V.E., and Roh Y.-S.,
*Transient Fluid Fracture Interaction*

Visser J.H.M. and van Mier J.G.M.
*Tensile Hydraulic Fracture of Concrete and Rock*

Gerdes A. and Wittmann F.H.,
*Influence of Stress Corrosion on Fracture Energy of Cementitious Materials*

Blaschke F. and Mehlhorn G.,
*Tensile Load-Bearing Behaviour of Concrete after Long-Term Static and Cyclic Tensile Preloading*

Magureanu C.,
*Influence of the Long-Term and Repeated Loading on Fracture Mechanics of the Partially Prestressed Beams*

Vervuurt A. and van Mier J.G.M.,
*Interface Fracture in Cement Based Materials*

Koide H., Akita H., and Tomon M.,
*Interaction of Plural Cracks in Concrete During Flexural Failure*

Landis E.N. and Shah S.P.,
*Experimental Measurements of Microfracture in Cement Based Materials*

Gao J., Wang M.L., and Schreyer H.L.,
*Experimental and Numerical Investigation of Failure of Quasi-Brittle Materials*
4. Concrete Failure under Compression

Liu Y.-Q., Hikosaka H., and Bolander Jr. J.E.,
Modelling Compressive Failure Using Rigid Particle Systems 375

van Vliet M.R.A. and van Mier J.G.M.,
Softening Behaviour of Concrete under Uniaxial Compression 383

Lee Y.-H., Willam K., and Kang H.-D.,
Experimental Observations of Concrete Behaviour under Uniaxial Compression 397

Wang H. and Hu X.-Z.,
Failure of Concrete with Oblique Weak Layer 415

Ikeda K. and Maruyama K.,
Compressive Strength Variation of Concrete Specimens Due to Imperfection Sensitivity 425

Markeset G.,
A Compressive Softening Model for Concrete 435

Blechman I.,
Microcracking in Concrete under Compression: its Gradient Mechanisms and Reflection in Macro 445

Stroeven P.,
A Case of Compression Failure in Concrete Due to Stress Release 461
5. Mixed Mode Fracture

Olofsson T., Ohlsson U., and Klisinski M.,
*A Simple Fracture Mechanics Model for Mixed-Mode Failure in Concrete*

473

di Prisco M. and Mazars J.,
*Mixed-Mode Fracture in Concrete: a Non-Local Damage Approach*

483

Peng S.-Y., Shirai N., and Irobe M.,
*Fracture Behaviour of Concrete to Mixed Loading*

495

Hu B., Zhao, G., and Song Y.,
*Influence of Age of Loading on Mixed Mode Fracture Parameters of Concrete*

505

6. Scaling Theories and Size Effect

Bazant Z.P.,
*Scaling Theories for Quasibrittle Fracture: Recent Advances and New Directions*

515

Bolander Jr., J.E. and Kobashi Y.,
*Size Effect Mechanisms in Numerical Concrete Fracture*

535

Rossi P. and Ulm F.-J.,
*Size Effects in the Biaxial Tensile-Compressive Behaviour of Concrete: Physical Mechanisms and Modelling*

543

Carpinteri A., Ferro G., and Invernizzi S.,
*A Truncated Statistical Model for Analyzing the Size-Effect on Tensile Strength of Concrete Structures*

557

Turatsinze A. and Bascoul A.,
*Crack Surface Friction and Size Effect in Mode I Propagation for Mortar and Concrete*

571

Carpinteri A. and Chiaia B.,
*Multifractal Scaling Law for the Fracture Energy Variation of Concrete Structures*

581
7. Rate Effects

Toutlemonde F., Boulay C., and Rossi P.,
High Strain Rate Tensile Behaviour of Concrete: Significant Parameters 709

Mechtcherine V., Garrecht H., and Hilsdorf H.K.,
Effect of Temperature and Loading Rate on Fracture Behaviour of Concrete Subjected to Uniaxial Tension 719
8. Fibre Reinforced Concrete

Matsuo S., Matsuoka S., Masuda A., and Yanagi H.,
A Study on Approximation Method of Tension Softening Curve of Steel Fiber Reinforced Concrete

Mihashi H., Nomura N., Nakamura H., and Umeoka T.,
What is Interpreted from Fractured Surfaces in Concrete?

Gopalaratnam V.S., Gettu R., Carmona S., and Jamet D.,
Characterization of the Toughness of Fiber Reinforced Concrete Using the Load-CMOD Response

Ouyang C., Pacios A., and Shah S.P.,
An R-Curve Approach for Pull-Out Fibres From a Matrix

Vitek J.L. and Vitek P.,
Fracture of Fibre-Reinforced Concrete Beams with Low Fibre Content

Chang T.-P., Lin C.-Y., Hwang C.-L., and Shieh M.M.,
Effects of Fiber on Fracture Properties of Light Weight Concrete Made with Fly-Ash Pelletized Aggregates

Felicetti R., Gambarova P.G., and Zanini N.,
On Crack Propagation and Failure Modes in Fiber-Reinforced Concrete Slabs

Author Index (Volume I and Volume II)