Contents

Part 1
Hardware Supported Texturing

The PixelFlow Texture and Image Subsystem
Steven Molnar, University of North Carolina 3

Single Chip Hardware Support for Rasterization and Texture Mapping
Hans-Josef Ackermann, Fraunhofer Gesellschaft, Darmstadt 15

Approximation Techniques for High Performance Texture Mapping
Mehmet Demirer, R.L. Grimsdale, University of Sussex 25

Hardware for Superior Texture Performance
Günther Knittel, A. Schilling, A. Kugler, W. Straßer,
University of Tübingen ... 33

Part 2
Fast Rasterization and Shading

Reducing Latency on PixelFlow
Anselmo A. Lasbra, University of North Carolina 43

Design of an On-Chip Reflectance Map
Jeroen T. van Scheltinga, J. Smit, M. Bosma,
University of Twente ... 51

An Architecture For Rapid Stereoscopic Image Generation
Shaun McCann, G. Dunnett, S. Pearce, M. White, M. Waller, P.F. Lister,
University of Sussex .. 57
Hardware Supported Bump Mapping: A Step towards Higher Quality Real-Time Rendering
Ines Ernst, D. Jackél, University of Rostock,
H. Rüsseler, O. Wittig, GMD First, University of Berlin 63

Part 3
Architectures for Volume Rendering

A PCI–based Volume Rendering Accelerator
G. Knittel, University of Tübingen ... 73

Design of a Fast Voxel Processor for Parallel Volume Visualization Architecture
Jan Lichtermann, University of Kaiserslautern 83

An Array–based Design for Real–Time Volume Rendering
Michael Doggett, University of New South Wales 93

Hardware Architecture for Voxelization-based Volume Rendering of Unstructured Grids
Swamy Manohar, C.E. Prakash, Indian Institute of Science,
Bangalore ... 103

Super Resolution Volume Rendering Hardware
Marco Bosma, J. Smit, J. T. van Scheltinga,
University of Twente ... 117

Towards a Scalable Architecture for Real–Time Volume Rendering
Hanspeter Pfister, A. Kaufman, T. Wessels
State University of New York .. 123