Solid Freeform Fabrication as an important and totally integrated approach to design, materials processing and manufacturing research results related to it is contained in this proceedings of the SFF Symposium held in Austin, Texas on August 7-9, 1995

SFF Topics covered in the Symposium include:

Machine Design
Computer Sectioning
Reverse Engineering
Materials Processing
Applications

Harris L. Marcus, Joseph J. Beaman,
David L. Bourell, Joel W. Barlow,
and Richard H. Crawford, Editors

© 1995 The University of Texas at Austin
All rights of reproduction in any form are protected by U.S. Copyright Laws.
Permission to copy all or portions of the proceedings contents must be obtained from the authors and The University of Texas at Austin.
Library of Congress ISSN 1053-2153
Table of Contents

Preface

Structural Ceramics by Fused Deposition of Ceramics
Rutgers University, Allied-Signal Research & Technology
1

Al2O3 Ceramics made by CAM-LEM (Computer-Aided Manufacturing of Laminated Engineering Materials) Technology
J.D. Cawley, P. Wei, Z.E. Liu, W.S. Newman, B.B. Mathewson, Arthur H. Heuer
Case Western Reserve University, CAM-LEM Inc.
9

Predicting and Controlling Resolution and Surface Finish of Ceramic Objects Produced by Stereodeposition Processes
R.S. Crockett, J. O’Kelly, P.D. Calvert, B.D. Fabes, K. Stuffle, P. Creegan, R. Hoffman
University of Arizona, Advanced Ceramics Research
17

Selective Laser Sintering and Fused Deposition Modeling Processes For Functional Ceramic Parts
E. Alair Griffin, Scott McMillin
Lone Peak Engineering
25

Ceramic Stereolithography for Investment Casting and Biomedical Applications
Michelle L. Griffith, Tien-Min Chu, Warren C. Wagner, John W. Halloran
The University of Michigan
31

Application of Cementitious Bulk Materials to Site Processed Solid Freeform Construction
Joseph Pegna
Rensselaer Polytechnic Institute
39

Selective Laser Sintering of Alumina-Zinc Borosilicate Glass Composites using Monoclinic HB02 as a Binder
Insup Lee, A. Manthiram, H.L. Marcus
The University of Texas at Austin, University of Connecticut
46

Effect of Processing Parameters in SLS of Metal-Polymer Powders
B. Badrinarayan, J.W. Barlow
The University of Texas at Austin
55

Electron Beam Solid Freeform Fabrication of Metal Parts
Vivek Davé, John Matz, Thomas Eagar
MIT, UTC/Pratt & Whitney
64

Accuracy and Mechanical Behaviour of Metal Parts Produced by Lasersintering
T. Pintat, M. Greul, M. Greulich, C. Wilkening
Fraunhofer - IFAM, EOS GmbH
72
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A New SFF Process for Functional Part Rapid Prototyping and Manufacturing: Freeform Powder Molding</td>
<td>80</td>
</tr>
<tr>
<td>Stephen J. Rock, Charles R. Gilman</td>
<td></td>
</tr>
<tr>
<td>Rensselaer Polytechnic Institute</td>
<td></td>
</tr>
<tr>
<td>Thermal Design Parameters Critical to the Development of Solid Freeform Fabrication of Structural Materials with Controlled Nano-Liter Droplets</td>
<td>88</td>
</tr>
<tr>
<td>Melissa Orme, Changzheng Huang</td>
<td></td>
</tr>
<tr>
<td>University of California</td>
<td></td>
</tr>
<tr>
<td>The Finishing of Stereolithography Models using Resin Based Coatings</td>
<td>96</td>
</tr>
<tr>
<td>P.E. Reeves, R.C. Cobb</td>
<td></td>
</tr>
<tr>
<td>University of Nottingham</td>
<td></td>
</tr>
<tr>
<td>Influence of Post-Curing Conditions on the Mechanical Properties of Stereolithographic Photopolymers</td>
<td>107</td>
</tr>
<tr>
<td>Suresh Jayanth, Bronson Hokuf, John Lawton</td>
<td></td>
</tr>
<tr>
<td>DuPont Somos™ Materials Group</td>
<td></td>
</tr>
<tr>
<td>Processing, Thermal, and Mechanical Issues in Shape Deposition Manufacturing</td>
<td>118</td>
</tr>
<tr>
<td>*Stanford University, *Carnegie Mellon University</td>
<td></td>
</tr>
<tr>
<td>A 3D Print Process for Inexpensive Plastic Parts</td>
<td>130</td>
</tr>
<tr>
<td>I. Ederer, R. Höchsmann, J. Machan</td>
<td></td>
</tr>
<tr>
<td>Lehrstuhl für Feingerätebau (FGB)</td>
<td></td>
</tr>
<tr>
<td>In-Situ Property Measurements on Laser-Drawn Strands of SL 5170 Epoxy and SL 5149 Acrylate</td>
<td>134</td>
</tr>
<tr>
<td>T. R. Guess, R.S. Chambers</td>
<td></td>
</tr>
<tr>
<td>Sandia National Laboratories</td>
<td></td>
</tr>
<tr>
<td>Gas-Phase Laser-Induced Pyrolysis of Tapered Microstructures</td>
<td>143</td>
</tr>
<tr>
<td>James Maxwell, Joseph Pegna, Eric Hill</td>
<td></td>
</tr>
<tr>
<td>Rensselaer Polytechnic Institute</td>
<td></td>
</tr>
<tr>
<td>Improved Energy Delivery for Selective Laser Sintering</td>
<td>151</td>
</tr>
<tr>
<td>Carl Deckard, David Miller</td>
<td></td>
</tr>
<tr>
<td>Clemson University</td>
<td></td>
</tr>
<tr>
<td>Improvements in SLS Part Accuracy</td>
<td>159</td>
</tr>
<tr>
<td>Christian Nelson, Kevin McAlea, Damien Gray</td>
<td></td>
</tr>
<tr>
<td>DTM Corporation</td>
<td></td>
</tr>
<tr>
<td>Accuracy of Stereolithography Parts: Mechanism and Modes of Distortion for a "Letter H" Diagnostic Part</td>
<td>170</td>
</tr>
<tr>
<td>*Ciba-Geigy Corp., *3D Systems</td>
<td></td>
</tr>
<tr>
<td>Surface Characterization of Polycarbonate Parts from Selective Laser Sintering</td>
<td>181</td>
</tr>
<tr>
<td>Irem Turner, David Thompson, Richard Crawford, Kristin Wood</td>
<td></td>
</tr>
<tr>
<td>The University of Texas at Austin</td>
<td></td>
</tr>
</tbody>
</table>
A Phenomenological Numerical Model for Fused Deposition Processing of Particle Filled Parts

University of Illinois at Chicago, *Rutgers University

Densification and Distortion in Selective Laser Sintering of Polycarbonate

M. Berzins, T.H.C. Childs, K.W. Dalgarno, G.R. Ryder, G. Stein
University of Leeds

Photoelastic Investigation Using New STL-Resins

W. Steinchen, B. Kramer, G. Kupfer
Universität Gesamthochschule Kassel

The Use of STEP to Integrate Design and Solid Freeform Fabrication

Charles R. Gilman, Stephen J. Rock
Rensselaer Polytechnic Institute

Control of Residual Thermal Stresses in Shape Deposition Manufacturing

Carnegie Mellon University

Support Generation for Fused Deposition Modelling

*Kumar Chalasani, *Larry Jones, *Larry Roscoe
*Stratasys, Inc., *SDRC

Stresses Created in Ceramic Shells using Quickcast Models

Richard Hague, Phill Dickens
University of Nottingham

Automated Fabrication of Ceramic Components from Tape-Cast Ceramic

*CAM-LEM, Inc., *Case Western Reserve University

Linear Shrinkage of Stereolithography Resins

Jill S. Ullett, Stanley J. Rodrigues, Richard P. Chartoff
University of Dayton

Application of Stereolithography in the Fabrication of Rehabilitation Aids

*A.I. DuPont Institute/ University of Delaware, *University of Pennsylvania

The Production of Electrical Discharge Machining Electrodes Using SLS: Preliminary Results

Brent E. Stucker, Walter L. Bradley, Somchin (Jiab) Norasetthekul, Phillip T. Eubank
Texas A&M University

The Development of a SLS Plastic Composite® Material

Paul Forderhase, Kevin McAlea, Richard Booth
DTM Corporation

Photopolymerization Reaction Rates By Reflectance Real Time Infrared Spectroscopy: Application To Stereolithography Resins

Richard P. Chartoff, Jin Du
University of Dayton
3D Laser Shaping of Ceramic and Ceramic Composite Materials
J.A. Todd, S.M. Copley, M.I. Yankova, F. Fariborzi, K. West
Illinois Institute of Technology

Quality of Parts Processed by Fused Deposition
*Rutgers University, +Allied-Signal Research & Technology

Shearography - a Practical Optical Testing and Measuring Method
W. Steinchen
Universität Gesamthochschule Kassel

On Three Dimensional Heuristic Packing for Solid Freeform Fabrication
Alejandro Beascoechea, Michael J. Wozny
Rensselaer Polytechnic Institute

Integration of a Solid Freeform Fabrication Process into a Feature-Based CAD System Environment
Young Suh, Michael J. Wozny
Rensselaer Polytechnic Institute

Free Form Fabrication of High Strength Metal Components and Dies
+C.C. Bampton, +R. Burkett
+Rockwell Science Center, +Rocketdyne

Effect of Particle Size on SLS and Post-Processing of Alumina with Polymer Binders
+P. Kamatchi Subramanian, +J.W. Barlow, +H.L. Marcus
+The University of Texas at Austin, +University of Connecticut

Modeling of Dynamic Effects Caused by the Beam Delivery System in Selective Laser Sintering
Irem Tumer, Kristin Wood, Ilene Busch-Vishniac
The University of Texas at Austin

Optimizing Part Quality with Orientation
David Thompson, Richard Crawford
The University of Texas at Austin

Selective Laser Sintering Preparation and Tribological Testing of Nanostructured Tungsten Carbide-Cobalt Composites
+Rand D. Cottle, +Britton R. Birmingham, +Zwy Eliezer, +Harris L. Marcus
+The University of Texas at Austin, +University of Connecticut

Densification Behavior of SLS Processed Al2O3/Al Composite
+T. Srinivasa Rao, +D.L. Bourell, +H. L. Marcus
+R.E.C., +The University of Texas at Austin, +The University of Connecticut

Selective Area Laser Deposition of Titanium Tetrachloride
+Kevin Jakubenas, +H.L. Marcus
+The University of Texas at Austin, +University of Connecticut
Solid Freeform Fabrication of Silicon Nitride Shapes by Selective Laser Reaction Sintering (SLRS)
 *B.R. Birmingham, *H.L. Marcus
 *The University of Texas at Austin, *University of Connecticut

The Prediction of the Thermal Conductivity of Powders
 Samuel Sumin Sih, Joel W. Barlow
 The University of Texas at Austin

Emissivity of Powder Beds
 Samuel Sumin Sih, Joel W. Barlow
 The University of Texas at Austin

Ceramic Joining by Selective Beam Deposition
 *J.V. Tompkins, *B.R. Birmingham, *H.L. Marcus
 *The University of Texas at Austin, *University of Connecticut

Nickel Applied for Selective Laser Sintering Using a Magnetic Field
 Lawrence S. Melvin III, Joseph J. Beaman, Jr.
 The University of Texas at Austin

A Sieve Feed System for the Selective Laser Sintering Process
 Lawrence S. Melvin III, Joseph J. Beaman, Jr.
 The University of Texas at Austin

Deposition Rates of Silicon Carbide by Selected Area Laser Deposition
 *The University of Texas at Austin, *University of Connecticut

Fundamentals of Liquid Phase Sintering During Selective Laser Sintering
 *The University of Texas at Austin, *University of Connecticut

Production of Injection Molding Tooling with Conformal Cooling Channels using the Three Dimensional Printing Process
 Emanuel Sachs, Samuel Allen, Michael Cima, Edward Wylonis, Honglin Guo
 MIT

A Neural Network Architecture to Identify the Bone Tissue for Solid Freeform Fabrication
 Nena Marin, Richard Crawford
 The University of Texas at Austin

Structural Ceramic Components by 3D Printing
 MIT

Keyword Index

Author/Attendee List

World-Wide Web Sites Related to Solid Freeform Fabrication