electromagnetic compatibility
1995
TABLE OF CONTENTS

Key to the paper numbering:

107PS

- Fifth paper to be delivered in Session P
- 107th paper in this book
A. Transient effects

1A1 M. Sarlo, Univ. of Rome "La Sapienza", Italy; J. L. ter Haseborg, TU Hamburg-Harburg, Germany: Transient response analysis of two-stage nonlinear protection circuits in signal transmission systems.

B. EMC applications

5B1 F. B. J. Laferink, Hollandse Signaalapparaten, Nangelo, Netherlands: Controlled design of EMI proof circuits.

7B3 H. R. Hofmann, AT&T Bell Lab., Naperville, IL, USA: Experiences in making on-site EMC measurements.

8B4 J. P. Bell, M. O. Bonningfield, IBM, Austin, TX, USA: A method of modeling computer hardware above 1 GHz.

9B5 M. R. Sega, NASA, Houston, TX; J. D. Norgard, Univ. of Colorado, Colorado Springs, CO; S. M. Hill, Space ind. Inc., League City, TX, USA: Electromagnetic interference in the attitude control system of the wake shield facility - A space shuttle experiment.

C. Power systems

10C1 L. T. Asseube, Univ. of Hannover, Germany: Power line EMI-filter design using the combinatorial optimization method simulated annealing.

11C2 O. V. Evdokimov, Admiral Makarov Maritime Acad.; A. A. Sherman, Krylov Central Scientific Res. Inst.; E. V. Kolesnichenko, Shipbuilding Academy, St. Petersburg, Russia: Active filters for decreasing electromagnetic interference of ship power systems.

12C3 S. Cristina, University of Rome "La Sapienza"; A. Orlandi, University of L'Aquila; G. Dell'Olio, UNED, DPT, Rome, Italy: A method of computing the electromagnetic interferences from HVDC converter stations.

13C4 P. Czernywojtek, W. Machczynski, Politechnika Poznanska, Poznan, Poland: Analysis of power line transients on earth return circuits using simulation programs.

14C5 T. Karasewa, Hiliachi Ltd., Chiba; S. Nitta, Tokyo Univ. of Agri. & Techn., Japan: Approximate analysis of the harmonic content of electromagnetic noise radiated from RF induction heating apparatus.

D. Transmission lines

15D1 P. Besnerr, B. Demoulin, P. Degauque, Univ. of Lille, Villeneuve d'Ascq, France: Finding bounding values for disturbances induced on multiconductor transmission lines by electromagnetic perturbation.

16D2 A. Ciocciolli, ESA-ESTEC, Noordwijk, Netherlands; F. Canavero, Politecnico di Torino, Italy: Statistical simulation of crosstalk in random cables.

17D3 G. Lucca, G. L., Solbiati, SIFIT, Milano, Italy: Transmission line circuit with non linear impedances: Application to EMC problems.

18D4 M. C. Randell, Univ. of Nottingham; A. C. Marvin, Univ. of York, England: An analytical transmission line model of crosstalk between conductors in shielded environments.

19D5 V. Daniele, M. Gilli, S. Pignani, Politecnico di Torino, Italy: Equivalent circuit representation of a transmission line crossing a circular aperture in a semi-infinite metallic screen.

E. Standards

20E1 D. N. Heirman, AT&T Bell Lab., Holmdel, NJ, USA: Progress in ITE emission measurement methods.

23E4 G. Weil, N. C. Walker, KeyTek Instr. Corp., Wilmington, MA, USA: Current Inrush transients from application of AC mains power.

25E6 T. Williams, Elmac Services, Chichester, England: EMC and litigation: Some thoughts from the high court.

F. Trends in spectrum management

27F2 S. Miyamoto, Osaka Univ.; M. Katayama, Nagoya Univ.; N. Morinaga, Osaka Univ., Japan: Design of TCM signals for class-A impulsive noise environments.

28F3 M. A. Bykrovsky, A. P. Pavliouk, Radio Research & Development Inst. (NIIR), Moscow, Russia: Frequency planning for cellular mobile systems.

29F4 G. Rossi, ITU, Geneva, Switzerland: Computer aided synthesis procedures for coverage area optimization at VHF and UHF.

31F6 P. B. Kenington, D. W. Bennett, J. K. Parsons, Univ. of Bristol, England: Assessment of RF protection ratios with respect to ISM equipment.

G. Circuit oriented techniques in EMC

32G1 A. E. Ruehl, IBM Res. Div., Yorktown Heights, NY, USA: Recent progress in circuit oriented techniques for EMC.

33G2 J. E. Garreti, IBM, Rochester, MN; A. E. Ruehl, IBM, Yorktown Heights, NY; C. R. Paul, Univ. of Kentucky, Lexington, KY, USA: Efficient frequency domain solutions for sPEEC EFIE for modeling 3D geometries.

35G4 H. R. Heeb, IBM, Yorktown Heights, NY, USA: EMI simulation using retarded partial element equivalent circuits and asymptotic waveform evaluation.

36G5 I. Maio, F. Canavero, Politecnico di Torino, Italy: Modelling of line losses and dispersion effects for
signal integrity simulation.

37G6
R. Khazaka, E. Chiproux, M. Nakhia, Q. J. Zhang, Carleton Univ., Ottawa, Canada: Analysis of high-speed interconnects with frequency dependent parameters.

H. EMC immunity testing

40H1 K.-H. Gonschorrek, TU Hamburg-Harburg, Germany: Against which electromagnetic phenomena should electronic devices be immune?

41H2 M. J. Coenen, Philips Semiconductors, Eindhoven, Netherlands: Conducted RF emission and RF immunity testing.

43H4 L. Carbonini, ALENIA Stetami Diffesa, Caselle Torinese, Italy: A test range for radiated immunity testing of an aircraft: Validation by a scale model.

45H6 S. Sell, S. Ponnakallil, Univ. of Newcastle, England: Conducted susceptibility testing of MMC mobile radio receiver front ends.

46H7 M. Cappio Borlini, E. Glorio, V. Squizzato, CSELT, Torino, Italy: Tests of immunity to GSM pulse modulation.

I. Electromagnetic field hazards

48H1 H. Baggensstrom, Swiss Fed. Inst. of Technology Zurich, Switzerland: Human exposure to electromagnetic fields.

49H2 S. Joss, J. Baumann, BUWAL, Berne; U. Kreuter, CONSULT AG, Liebefeld; M. Stratmann, Ch. Wernli, Paul Scherrer Instit., Villigen, Switzerland: Exposure of the Swiss population to 50 Hz magnetic fields.

50H3 E. L. Ovchinikov, A. N. Volobuev, L. A. Trufanov, P. I. Romanchuk, Medical Univ., Samara, Russia: Constant magnetic field dosimetry.

51H4 D. Simunic, P. Wach, W. Renther, Graz Univ. of Technol.; R. Stollberger, Univ. of Graz, Austria: RF energy deposition in the human head during magnetic resonance imaging.

53H6 O. Balzano, Motorola, Ft. Lauderdale, FL, USA: Considerations on the interference phenomena near resonant antennas emitting pulsed RF signals.

54H7 S. Gulschling, T. Walland, TH Darmstadt, Germany: Detailed SAR distribution in high resolution human head models.

J. EMC education and training

56J1 J. Catrysse, Catholic Industrial University, Oostende, Belgium: EMC: Educational aspects and training needs.

57J2 D. J. Bern, J. M. Janiszewski, T. W. Wieckowski, Techn. Univ. of Wroclaw, Poland: EMC education for radio communication engineers at the Technical University of Wroclaw.

58J3 J. Catrysse, Catholic Industrial University, Oostende, Belgium; K. Kovac, V. Smilisko, Slovak Techn. Univ., Bratislava, Slovakia: The help of TEMPUS programme in introducing EMC-education at Slovak Technical University.

59J4 R. De Leo, V. Mariani Primiani, Univ. of Ancona, Italy: Laboratory organization of the EMC course at Ancona University.

60J5 B. Danker, EMC Consult, Nuenen, Netherlands: Technical education and EMC.

61J6 J. G. Tront, Virginia Polytechnic Inst., Blacksburg, VA, USA: Improving engineering education through the use of advanced educational technology.

K. Numerical techniques for EMC

62K1 G. Costiache, Univ. of Ottawa, Ontario, Canada: Numerical techniques applied to EMIC problems.

63K2 S. Celozzi, Univ. of Rome "La Sapienza"; A. Oriandi, Univ. of L'Aquila, Italy: Numerical modeling of finite size PCB for radiated EMI prediction.

65K4 J. Lo Vetri, Univ. of Western Ontario, London, ON, Canada: On characteristic based upwind differencing schemes for multiconductor transmission lines.

66K5 N. Merly, B. Baekelandt, D. Zutter, Univ. of Ghent; H. Fues, GRACE NV, Westerlo, Belgium: A surface integral equation approach to the scattering and absorption of multilayered doubly periodic lossy structures of arbitrary shape.

67K6 U. Jakobus, F. M. Landstorfer, Univ. of Stuttgart, Germany: Improved physical optics approximation for flat polygonal scatterers.

69K8 V. Basilla, Alenia Spazio, Torino; V. Daniele, M. Gilli, R. D. Greglia, Politecnico di Torino, Italy: EM-noise interference inside a non absorbing cavity.

L. Immunity

72L3 W. van Lock, G. de Virts, Univ. of Gent, Belgium: ISM leakages as a potential threat on aircraft navigation.

73L4 M. Schallner, F. M. Landstorfer, Univ. of Stuttgart, Germany: Simultaneous direction finding of several broadband electromagnetic sources.

74L5 Z. Hrytskiv, Lviv Polytechnic State Univ, Ukraine: Immunity of a cathode ray tube display against external magnetic fields.

75L6 C. Baltag, Inst. of Technical Physics, Iasi, Romania: Dynamic control and annulment of electromagnetic pollution.

77L8 A. Wiestelrand, P. Meganck, C. Semet, R. Qabillard, INRETS-LEOST, Villeneuve d'Ascq, France: Case study on security level of localization systems for guided vehicles using electronic beacons.
M. Lightning EMP

78M1 C. Baum, Phillips Lab., Kirtland AFB, NM, USA: Limited-angle-of-incidence and limited-time electric sensors.

81M4 M. Rubinstein, EPFL, Lausanne, Switzerland: On the determination of the flash detection efficiency of lightning location systems given their stroke detection efficiency.

82M5 S. Guerrieri, M. Ianoz, F. Rechidi, P. Zwiacker, EPFL, Lausanne, Switzerland; C. A. Nucci, Univ. of Bologna, Italy: A time-domain approach to evaluate induced currents and voltages on tree-shaped electrical networks by external electromagnetic fields.

84M7 T. Motomiuki, NTT Tech. Ass. & Support Center, Tokyo, Japan: Estimating the transverse lightning surge induced in telecom cables.

N. EMC instruments and measurements

85N1 E. L. Bronough, EdEB EMC Consullt., Austin, TX, USA: Improving instruments and measurements for EMC.

86N2 P. Sikora, ELECTRO-METRICS, Amsterdam, NY, USA: An EMI receiver design using modern digital techniques.

87N3 G. Faessler, F. M. Landstorfer, F. Wiodmann, Univ of Stuttgart, Germany: A method to investigate the current distribution on printed circuit boards.

88N4 S. H. Berger, ROLM, Austin, TX, USA: A variable position, gravity down G-TEM configuration.

90N6 F. Gasamann, EMC Baden Lt.; A. K. Skrivelvik, EPUL, Lausanne, Switzerland; D. D. Hall, GEC Marconi, Chelmsford, England: Photonic field sensor for simultaneous and fully passive isotropic electric and magnetic field measurements up to 1 GHz.

92N8 N. Kuwabara, R. Kobayashi, NTT Telecom Networks Lab., Tokyo, Japan: Development of electric field sensor using Mach-Zehnder Interferometer.

O. Shielding and coupling

93O1 R. De Smedt, ALCATEL Bell Telephone, Antwerp, Belgium: Theoretical background of the measurement procedures of the transfer impedance in presence of mismatched lines.

94O2 F. Broycédé, E. Clavelier, EXCEM, Maule, France: Parallel and axial transfer impedances: Theoretical summary and local measurement methods.

95O3 D. Ristau, D. Hansen, EURO EMC SERVICE, Tästow, Germany: A new method for determining shielding effectiveness of screened rooms in comparison with other known methods.

98O6 H. Yamane, Y. Maeda, M. Tokuda, NTT Telecom Networks Lab., Tokyo, Japan: Influence of extension lines on electromagnetic shielding effects of the wire-mesh frame structure.

100O8 H. Grauby, GERAC, Labage: C. Cruciani, RTSN/TIFN-DCN, Toulon, France: Attenuation measurements and some shielding improvements on a glass reinforced plastic ship.

P. Electronic design under EMC constraints

101P1 W. John, Siemens Nixdorf Inf. Sys. / CADLAB, Paderborn, Germany: Electronic design under EMC constraints.

105P5 B. Stubo, B. Binnyus, W. Schade, WIDIS, Berlin, Germany: PCB placement under EMC-constraints by quadratic programming and slicing.

106P6 R. De Leo, E. Pasqualini, A. Schiavoni, Univ. of Ancona, Italy: FDTD evaluation of ground plane currents.

107P7 S. Oelting, INCASES Engineering, Paderborn; M. Kuenne, U. Keller, F. Sabath, M. Buecker, Univ. of Paderborn, Germany: Controlling EMI with the extended EMC-workbench.

Q. Alternatives to open area test sites

108Q1 P. Wilson, EMC Baden, Switzerland: Alternatives to open area test sites.

111Q4 F. Meyer, LEAD, Maisons Alfort, France: Ferrite absorbers for absorber-lined chambers: A new approach with μ and ϵ dispersion.

112Q5 M. Koch, H. Garbe, Univ. of Hannover, Germany: Investigation of field distortion in a TEM - waveguide.

113Q6 G. Groenbeke, TU Berlin, Germany: A new conical active absorber terminated TEM-cell for time-harmonic and transient use.

114Q7 L. Pierantonio, T. Rozzi, Univ. of Ancona, Italy: E.M. pulse propagation in GTEM cell.

115Q8 R. De Leo, L. Pierantonio, T. Rozzi, L. Zappelli, Univ. of Ancona, Italy: Wideband analytical model of the GTEM cell termination.
R. ESD Dynamics: Model / Measurement

116R1 W. Greason, Univ. of Western Ontario, London, Ontario, Canada: Indirect effect of ESD: Modelling and measurement.
117R2 H. Iwata, Y. Akao, Y. Uchida, S. Uchiyama, Aichi Inst. of Technology, Japan: Characteristics of indirect ESD fields from a metallic plate.
118R3 J. Catrysse, Catholic Ind. University, Oostende; L. Anaf, Bekaert Fibre Techn., Zwevegem, Belgium; C. Borgmans, W. Steenbakkers, DSM Res., Geleen, Netherlands: Comparative testing of enclosures made from conductive plastics concerning their ESD behaviour.

119R4 G. Cerri, R. De Leo, V. Mariani Primiani, A. Venturi, Univ. of Ancona, Italy: ESD coupling to coaxial shielded cables.
120R5 F. Hirtenthaler, S. Rwakasenyi, MacNeal-Schwendler, Munich, Germany; B. S. Brown, MacNeal-Schwendler, Milwaukee, WI, USA: Analysis of electrostatic discharge of a printed circuit board using the finite element time domain technique.
121R6 G. Cerri, R. De Leo, V. Mariani Primiani, Univ. of Ancona, Italy: ESD coupling between microstrip lines.
122R7 E. Habiger, TU Dresden, Germany: ESD-immunity testing to IEC 801-2. The reproducibility of the test results evaluated from a statistical point of view.
SUPPLEMENT:

TABLE OF CONTENTS

TUTORIAL LECTURES

T1 Numerical methods in EMC - an update. J. Perini, Syracuse University, Syracuse, NY, USA

T1T2 Principles and applications of EM field coupling to transmission lines. F. Tesche, Dallas, TX, USA

T2 Coupling to transmission line systems - Theoretical background and TLS code. W. Blumer, W. Joehl, IFH, ETH Zurich, Switzerland

T3 PCB & system design under EMC constraints. J. Catrysse, KIH.WV, Oostende, Belgium

T2T3 EMC of printed wiring boards. B. Danker, Nuenen, Netherlands

WORKSHOPS

W1 EMC in the directive of the EU: Recent developments. G. Goldberg, IEC - ACEC, Geneva, Switzerland

W1W1 The electromagnetic compatibility directive 89/336/CEE. J.Y. Boeswillwald, Commission of the EU, Directorate III, Brussels, Belgium

W1W2 EMC standards. G. Goldberg, IEC - Advisory Committee on EMC, Geneva, Switzerland

W1W3 Overview of standards related to power quality and testing of equipment to mains disturbances. R. De Vre, Laborelec, Linkebeek, Belgium

W2 Case studies. J. J. Goedbloed, Phillips Research Labs, Eindhoven, Netherlands

URSI OPEN MEETINGS

OE1 Report on the URSI Commission E scientific activities for the period 1990 - 1993. V. Scuka, Uppsala University, Uppsala, Sweden

OE2 XXIVth General Assembly of URSI, Kyoto, Japan 1993, Commission E: Report on scientific sessions. V. Scuka, Uppsala University, Uppsala, Sweden

OE3 Future trends, URSI Commission E. V. Scuka, Uppsala University, Uppsala, Sweden

OE4 Some limitations in the use of statistics in the determination of large system vulnerability to high-frequency electromagnetic waves. R. L. Gardner, Phillips Laboratory, Kirtland AFB; C. W. Jones, Metatech, Albuquerque, NM, USA

OE5 Terrestrial and planetary natural EM noise. Z-I. Kawasaki, Osaka University, Osaka; M. Hayakawa, The University of Electro-Communications, Tokyo, Japan

OE6 Current Injection for assessing EM characteristics of low voltage power installation networks. M. Ye, H. Perez, V. Scuka, Uppsala University, Uppsala, Sweden

OE7 Effects of electromagnetic interferences and transient disturbances on electronic devices and equipments. B. Demoulin, P. Degauque, Lille University, Lille, France; V. Scuka, Uppsala University, Uppsala, Sweden

OE8 History, activity, and prospect of the URSI Commission E Working Group: Extraterrestrial and terrestrial meteorological-electric environment with noise and chaos. H. Kikuchi, Nihon University, Tokyo, Japan

OK1 Foot current as a parameter relevant to the evaluation of the electromagnetic exposure hazard. P. Bernardi, M. Cavagnaro, S. Pisa, University of Rome "La Sapienza", Rome, Italy

OK2 Dielectric properties of biological systems. C. Gabriel, King's College, London, UK

OK3 Measurement of 50 Hz magnetic fields from infant incubators and heating beds. G. Anger, Swedish Radiation Protection Institute, Stockholm, Sweden

OK4 Magnetic fields in Swedish residences and day nurseries. J. Nissen, L.-E. Paulsson, Swedish Radiation Protection Institute, Stockholm, Sweden

OK5 Experimental studies of bioeffects of electromagnetic fields. B. Veyret, University of Bordeaux, France

OK6 Biological effectiveness of low intensity electromagnetic exposure: Non-linearity, out-of-equilibrium state, and noise. A. Chiabarra, B. Bianco, J. J. Kaufman, University of Genoa, Italy