COVER PHOTO: Successive Images from DMSP SSM/I, the first operational microwave imager, from 23 October 1987 over the western Pacific and Indian Oceans. Brightness temperatures are shown from the 22 GHz channel. This frequency is on the wings of a water vapor absorption band and is used to estimate total atmospheric water vapor. The data is presented such that brightness count varies inversely with brightness temperature. Therefore, over the ocean low brightness counts represent warm brightness temperatures and high water vapor content. Note the high water vapor content from about 30°N to 20°S. Image analysis courtesy of Mr. James Clark and Dr. Andreas K. Goroch, Naval Environmental Prediction Facility, Monterey, CA.

Copyright © 1987, American Meteorological Society. This copyright notice applies to only the overall collection of papers; authors retain their individual rights and should be contacted directly for permission to use their material separately. Contact AMS for permission pertaining to the overall collection.

The manuscripts reproduced in this collection of extended abstracts are un refereed papers presented at the Third Conference on Satellite Meteorology and Oceanography; their appearance in this collection does not constitute formal publication.

AMERICAN METEOROLOGICAL SOCIETY
45 Beacon St., Boston, Mass. 02108 U.S.A.
FOREWORD

AUTHOR INDEX

SESSION 1: TEMPERATURE RETRIEVALS

Chairperson: Dennis Chesters, NASA/Goddard Space Flight Center (GSFC), Greenbelt, Md.

1.1 EVALUATION OF SATELLITE SAMPLING OF THE MIDDLE ATMOSPHERE USING THE GFDL SKYHI GENERAL CIRCULATION MODEL. Denise Stephenson Graves, AT&T Bell Labs., Whippany, N.J

1.2 A CLIMATOLOGY OF ATMOSPHERIC STABILITY FOR THE TROPICS DERIVED FROM TOVS. Siri Jodha Singh Khalsa and Ellen J. Steiner, Univ. of Colorado, Boulder, Colo.

1.3 RETRIEVAL OF AIR SURFACE TEMPERATURES OVER OCEANS FROM SATELLITE RADIANCE MEASUREMENTS USING STRATIFICATION TECHNIQUES. Larry M. McMillin, NOAA/Satellite Research Lab., Washington, D.C.

1.7 COMPARISONS BETWEEN PHYSICALLY RETRIEVED TEMPERATURE AND MOISTURE FIELDS FROM NOAA-7, NOAA-9 AND CONVENTIONAL ANALYSES OF RADIOSONDE DATA. N. Husson, Y. Tahani, N. A. Scott, A. Chedin, LMD/CNRS Ecole Polytechnique, Palaiseau, France

1.10 RELATIONS BETWEEN VAS PHYSICAL RETRIEVALS AND THEIR FIRST GUESS INPUT. John L. Beven II and Henry E. Fuelberg, Florida State Univ., Tallahassee, Fla.

1.11 A SPECTRAL APPROACH TO THE UNIFICATION OF SATELLITE AND CONVENTIONAL TEMPERATURE DATA. Kyung-Sup Shin and James R. Scoggins, Texas A&M Univ., College Station, Tex.

*Abstract available; see p. 428.
**Manuscript not available; if received in time, it will appear at back of book.
SESSION 2: WATER VAPOR RETRIEVALS

Chairperson: Anthony Mostek, National Meteorological Center, Washington, D.C.

<table>
<thead>
<tr>
<th>Session Number</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>On the Interpretation of Integrated Water Vapor Patterns in Midlatitude Cyclones Derived from the Nimbus 7 Scanning Multichannel Microwave Radiometer.</td>
<td>Lynn A. McMurtrie and Kristina B. Katsaros, Univ. of Washington, Seattle, Wash.</td>
<td>60</td>
</tr>
<tr>
<td>2.2</td>
<td>Precipitable Water Derived from Nimbus-7 SMMR Measurements and Its Comparison to FGGE III-B Data During January 10-February 13, 1979.</td>
<td>Huo-Jin (Alex) Huang, Univ. of North Carolina, Asheville, N.C.; Dayton G. Vincent, Purdue Univ., W. Lafayette, Ind.; and Franklin R. Robertson, NASA/MSFC, Huntsville, Ala.</td>
<td>64</td>
</tr>
<tr>
<td>2.3</td>
<td>An Example of Estimates of Precipitable Water Derived from Nimbus-7 SMMR Satellite Measurements and FGGE Upper Air Data.</td>
<td>Douglas K. Miller and Dayton G. Vincent, Purdue Univ., W. Lafayette, Ind.</td>
<td>70</td>
</tr>
<tr>
<td>2.4</td>
<td>Total Precipitable Water Measurements from the SSM/I.</td>
<td>John C. Alishouse, NOAA/NESDIS/Satellite Research Lab., Washington, D.C.; and Jennifer Vongsathorn, S. M. Systems and Research Corp., Lanham, Md.</td>
<td>74</td>
</tr>
<tr>
<td>2.5</td>
<td>Moisture Profile Estimats in Cloudy Layers Utilizing Geostationary Satellite Data.</td>
<td>Jacques Halle, Canadian Meteorological Centre, Dorval, Que., Canada</td>
<td>76</td>
</tr>
<tr>
<td>2.6</td>
<td>PROFS Quantitative Precipitable Water Product.</td>
<td>Daniel Birkenheuer, NOAA/ERL/ESG/PROFS, Boulder, Colo.</td>
<td>80</td>
</tr>
<tr>
<td>2.8</td>
<td>Determination of Low-Level Precipitable Water Variability from Split Window Channel Radiance Data.</td>
<td>Gary J. Jedlovec, NASA/ Marshall Space Flight Center (MSFC), Huntsville, Ala.</td>
<td>89</td>
</tr>
</tbody>
</table>

SESSION 3: MULTIPLE PARAMETER STUDIES

Chairperson: Dale A. Lowry, National Weather Service, Silver Spring, Md.

<table>
<thead>
<tr>
<th>Session Number</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Remote Sensing of Surface Air Temperature and Humidity over Oceanic Areas with Application to Climatology and Weather Prediction.</td>
<td>Louis Garand, Atmospheric Environment Service, Dorval, Que., Canada</td>
<td>95</td>
</tr>
<tr>
<td>3.2</td>
<td>Determination of Surface and Atmospheric Parameters Using the Advanced Microwave Sounding Unit.</td>
<td>Norman C. Grody, NOAA/NESDIS, Washington, D.C.</td>
<td>100</td>
</tr>
<tr>
<td>3.5</td>
<td>Temporal and Spatial Variability and Contamination of 6.7 and 7.3 Micrometer Water Vapor Radiiances.</td>
<td>K. G. Blackwell, J. P. McGuirk and A. H. Thompson, Texas A&M Univ., College Station, Tex.</td>
<td>115</td>
</tr>
</tbody>
</table>

*Abstract available; see p. 428.

**Manuscript not available; if received in time, it will appear at back of book.

SESSION 4: RADIATION BUDGET STUDIES

4.2 DECONVOLUTION RESULTS FOR WIDE-FIELD-OF-VIEW RADIOMETER MEASUREMENTS OF REFLECTED SOLAR RADIATION. G. Louis Smith, Langley Research Center; and David Rutan, PRC Kentron, Inc., Hampton, Va.

4.3 INTERCOMPARISON OF OUTGOING LONGWAVE RADIATION OBTAINED FROM ERBE AND NOAA OPERATIONAL SATELLITE: A PRELIMINARY RESULT. Shi-Keng Yang and B. Liebmann, Univ. of Maryland, College Park, Md.; and A. Gruber and A. Miller, NOAA, Washington, D.C.

SESSION 5: FORECASTING AND WEATHER ANALYSIS

Chairperson: Floyd Hauth, First Weather Wing, Hickam AFB, Hawaii

5.1 THE COMBINING OF METEOROLOGICAL RADAR AND SATELLITE DATA FOR THE SHORT-TERM PREDICTION OF RAINFALL AND SEVERE WEATHER. G. L. Austin, A. Bellon and A. Kilambi, McGill Radar Weather Observatory, Quebec, Canada

5.2 SATELLITE INTERPRETATION TECHNIQUES INVOLVING THUNDERSTORMS. Ernest H. Goetsch, National Weather Service (NWS) Forecast Office, Louisville, Ky.

5.3 STORM DIAGNOSTIC/PREDICTIVE IMAGES DERIVED FROM A COMBINATION OF LIGHTNING AND SATELLITE IMAGERY. Steven J. Goodman, Dennis E. Buechler and Paul E. Meyer, NASA/MSFC, Huntsville, Ala.

5.4 USING SATELLITE DATA TO AID IN DIAGNOSING AND FORECASTING CONVECTIVE DEVELOPMENT AND INTENSITY ALONG ARC CLOUD LINES. James P. W. Purdom and Peter C. Sinclair, Colorado State Univ., Ft. Collins, Colo.

5.5 ASSIMILATION OF SATELLITE SURFACE WIND SPEED DATA USING THE GLA ANALYSIS/FORECAST SYSTEM. S. C. Bloom and R. Atlas, NASA/GSFC, Greenbelt, Md.

5.6 INTEGRATION OF SATELLITE SCATTEROMETER AND RADIOMETER MEASUREMENTS. Marie C. Colton and Allan B. Caughey, NEPRF, Monterey, Calif.

5.7 ERROR ANALYSIS OF AUTOMATED WINDS DERIVED FROM GOES MULTISPECTRAL IMAGERY. Steven D. Swadley, NEPRF, Monterey, Calif.

5.8 PAPER WITHDRAWN

5.9 AUTOMATIC ANALYSIS OF STEREOSCOPIC IMAGE PAIRS FROM GOES SATELLITES. A. F. Hasler and J. Strong, NASA/GSFC, Greenbelt; and R. Morris and H. Pierce, General Sciences Corp., Laurel, Md.

*Abstract available; see p. 428.
**Manuscript not available; if received in time, it will appear at back of book.
5.10 FORECASTING CYCLOGENESIS USING GOES WATER VAPOR SATELLITE IMAGERY AND NUMERICAL MODELS. LeRoy E. Spayd, Jr., NWS/National Meteorological Center (NMC), Camp Springs, Md.

5.12 RELATIONS BETWEEN WATER VAPOR IMAGERY, VERTICAL MOTION AND TROPOPAUSE FOLDS. Steven R. Moore and Henry E. Fuelberg, Florida State Univ., Tallahassee, Fla.

5.14 USING THE VAS DATA UTILIZATION CENTER (VDUC) FOR THE ANALYSIS AND FORECASTING OF HEAVY RAINFALL PRODUCING MESOSCALE CONVECTIVE SYSTEMS (MCSS). Roderick A. Scofield, NOAA/NESDIS, Washington, D.C.

5.17 TROPICAL SYNOPTIC SIGNATURES IN COMPOSTED 6.7 MICROMETER WATER VAPOR IMAGERY. A. H. Thompson, J. P. McGuirk and D. J. Ulsh, Texas A&M Univ., College Station, Tex.

5.18 SATELLITE DIAGNOSIS OF TROPICAL CYCLONES. Raymond M. Zehr, Colorado State Univ., Ft. Collins, Colo.

SESSION J3: OCEAN APPLICATIONS (JOINT WITH 4 INTERACTIVE INFORMATION PROCESSING CONFERENCE)

J3.1 VISSR SENSOR INTRODUCED MODIFICATIONS IN THE PRESENCE OF LARGE TEMPERATURE GRADIENTS. E. V. Cherna, G. L. Austin, A. Bellon and A. Kilambi, McGill Radar Weather Observatory, St. Anne de Bellevue, Que., Canada

J3.2 OPERATIONAL CALIBRATION OF THE METEOSAT IR CHANNEL USING SEA SURFACE TEMPERATURE OBSERVATIONS. Volker Gaertner, European Space Operations Center (ESOC), Darmstadt, Fed. Rep. of Germany

J3.3 AUTOMATIC NAVIGATION FOR METEOROLOGICAL SATELLITES. Robert Pyzalski, David Santek and J. T. Young, Univ. of Wisconsin, Madison, Wis.

J3.5 A SYSTEM FOR MANAGEMENT, DISPLAY AND ANALYSIS OF OCEANOGRAPHIC TIME SERIES AND HYDROGRAPHIC DATA. Nancy N. Soreide and S. P. Hayes, NOAA/Pacific Marine Environmental Lab. (PMEL), Seattle, Wash.

*Abstract available; see p. 428.

**Manuscript not available; if received in time, it will appear at back of book.
SESSION 6: NEW AND FUTURE SYSTEMS

Chairperson: Gregory S. Wilson, NASA/MSFC, Huntsville, Ala.

6.3 CONCEPT FOR GEOSTATIONARY EXPERIMENTAL TEMPERATURE AND MOISTURE SOUNDER. J. B. Kumer et al., Lockheed Palo Alto Research Lab., Palo Alto, Calif.

6.8 THE GLOBAL BACKSCATTER EXPERIMENT (GLOBE) MEASUREMENT AND MODELING PROGRAM. David A. Bowdle, NASA/MSFC, Huntsville, Ala.

6.9 AEROSOL BACKSCATTER VARIABILITY AT 10.6 MICRONS OVER COLORADO HIGH PLAINS DURING JAWS EXPERIMENT. Jeff Rothermel and D. Bowdle, Univ. Space Research Association, Huntsville, Ala.; and J. M. Vaughan, Royal Signals and Radar Establishment, Great Malvern, United Kingdom

*Abstract available; see p. 428.
**Manuscript not available; if received in time, it will appear at back of book.
<table>
<thead>
<tr>
<th>Session 7: Rainfall Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 SATELLITE MICROWAVE RAINFALL SIMULATIONS WITH A THREE-DIMENSIONAL DYNAMICAL CLOUD MODEL. Robert F. Adler, W.-K. Tao, N. Prasad, J. Simpson and Hwa-Young Yeh, NASA/GSFC, Greenbelt, Md.</td>
</tr>
<tr>
<td>7.3 THUNDERSTORM ICE INDUCED BRIGHTNESS TEMPERATURE DEPRESSIONS AT 18, 37 and 92 GHZ DURING COHMEX AND THEIR IMPLICATIONS FOR SATELLITE PRECIPITATION RETRIEVALS. Robbie E. Hood and Roy W. Spencer, NASA/MSFC, Huntsville, Ala.</td>
</tr>
<tr>
<td>7.4 COMPARISON OF WEATHER RADAR AND SATELLITE-BASED PASSIVE MICROWAVE OBSERVATIONS OF RAINFALL OVER LAND AND OCEANS. Ralph R. Ferraro and Joseph V. Flore Jr., Research and Data Systems Corp., Lanham, Md.; and John C. Alishouse, NOAA/NESDIS, Washington, D.C.</td>
</tr>
<tr>
<td>7.5 A PILOT STUDY TO DETERMINE RELATIONSHIPS BETWEEN NORTH PACIFIC PRECIPITATION FROM NIMBUS-7 SCANNING MULTICHANNEL MICROWAVE RADIOMETER DATA AND ASSOCIATED ATMOSPHERIC CONDITIONS. Mark R. Anderson and John O. Roads, Scripps Inst. of Oceanography, La Jolla, Calif.</td>
</tr>
<tr>
<td>7.6 PRECIPITATION ESTIMATION USING VISIBLE AND INFRARED SATELLITE AND SURFACE DATA. C. E. Motell and C. H. Wash, Naval Postgraduate School, Monterey, Calif.</td>
</tr>
<tr>
<td>7.7 THE ADDITION OF VISIBLE CHANNEL DATA TO SATELLITE INFRARED RAIN ESTIMATION SCHEMES. Andrew J. Negri and Robert F. Adler, NASA/GSFC, Greenbelt, Md.</td>
</tr>
<tr>
<td>7.8 GLOBAL PRECIPITATION DERIVED FROM HIRS2/MSU SOUNDINGS. Man-Li Wu and Joel Susskind, NASA/GSFC, Greenbelt, Md.</td>
</tr>
<tr>
<td>7.9 VERTICAL PROFILES OF HEATING DERIVED FROM IR-BASED PRECIPITATION ESTIMATES DURING FGGE SOP-1. Franklin R. Robertson, NASA/MSFC, Huntsville, Ala.; and Dayton G. Vincent, Purdue Univ., W. Lafayette, Ind.</td>
</tr>
<tr>
<td>7.10 THE EVALUATION OF SIMPLE APPROACHES FOR THE DELINEATION OF RAIN AREA FROM SATELLITE IMAGERY. Anastasios A. Tsonis, Univ. of Wisconsin, Milwaukee, Wis.</td>
</tr>
<tr>
<td>7.11 VARIATION OF SATELLITE RAIN RELATIONSHIPS IN SPACE AND TIME. Patrick King and Tsoi-ching Yip, Atmospheric Environment Service (AES), Downsview, Ont., Canada</td>
</tr>
<tr>
<td>7.12 MID-LATITUDE EVALUATION OF SOME SATELLITE RAINFALL ESTIMATION TECHNIQUES. W. D. Hogg, A. J. Hanssen, A. Mitsuo and V. L. Polavarapu, AES, Downsview, Ont., Canada</td>
</tr>
<tr>
<td>7.13 COMPARISON OF SATELLITE IR RAIN ESTIMATES WITH RADAR RAIN OBSERVATIONS IN HURRICANES. K. Robert Morris, General Sciences Corp., Laurel; and Andrew J. Negri and Robert F. Adler, NASA/GSFC, Greenbelt, Md.</td>
</tr>
</tbody>
</table>

*Abstract available; see p. 428.

**Manuscript not available; if received in time, it will appear at back of book.
SESSION 8: DETECTION OF CLOUDS AND CLOUD PARAMETERS

8.1 FIRE: A MULTIDISCIPLINE PROGRAM TO IMPROVE CLOUD OBSERVATION FROM SATELLITES. David S. McDougal, NASA/Langley Research Center, Hampton, Va. (Invited Paper)

8.2 INTENSIVE FIELD OBSERVATIONS OF CIRRUS CLOUDS. David O'C. Starr, SUNY, Albany, N.Y.

8.3 INTENSIVE OBSERVATIONS OF MARINE STRATOCUMULUS CLOUDS DURING FIRE. Bruce Albrecht, Pennsylvania State Univ., University Park, Penn. (Invited Paper)

8.4 CLOUD COVER STATISTICS FROM GOES/VAS. Donald Wylie, Peter Grimm, Univ. of Wisconsin; and W. P. Menzel, NOAA/NESDIS Advanced Satellite Products Project, Madison, Wis.

8.5 ANNUAL AND INTERANNUAL VARIATIONS IN THE VERTICAL DISTRIBUTION OF COLD CLOUDINESS OVER THE EASTERN PACIFIC AND THE AMERICAS. Phillip A. Arkin, NOAA/NWS/NMC/Climate Analysis Center, Washington, D.C.

8.7 AN IMPROVED METHOD FOR THE RETRIEVAL OF CLOUD HEIGHT AND AMOUNT FROM SATELLITE RADIANCE MEASUREMENTS. Andrew J. Nappi, Anand Swaroop and Larry M. McMillin, ST Systems Corp., Lanham, Md.

8.8 RESOLUTION DEPENDENCE IN SATELLITE IMAGERY: MULTIFRACTAL ANALYSIS. P. Gabriel, S. Lovejoy and D. Schertzer, McGill Univ., Montreal, Canada

8.9 MODELING THE SCALE DEPENDENCE OF VISIBLE SATELLITE IMAGES BY RADIATIVE TRANSFER IN FRACTAL CLOUDS. S. Lovejoy, P. Gabriel, D. Schertzer and G. L. Austin, McGill Univ., Montreal, Canada

8.11 ANALYSIS OF CLOUD DYNAMICS WITH MULTISPECTRAL TECHNIQUES. Andreas K. Goroch and James R. Clark, NEPRF, Monterey, Calif.

8.12 DUAL-IMAGE PROCESSING TO ENHANCE LOW CLOUDS AND DELINEATE PRECIPITATION. A. D. Fox, S. W. Lyons and G. W. Rainey, Pacific Missile Test Center, Point Mugu, Calif.

SESSION 9: OCEAN REMOTE SENSING

Chairperson: Erik Mollo-Christensen, NASA/GSFC, Greenbelt, Md.

9.1 WIDE SWATH RADAR ALTIMETRY: TOPOGRAPHIC MAPPING SYSTEMS OF THE FUTURE. Chester Parsons, NASA/GSFC, Greenbelt, Md. (Invited Paper)

9.3 EVALUATION OF 3.7 MICROMETERS SPLIT WINDOWS FOR ESTIMATING SURFACE TEMPERATURE. David S. Crosby, Larry M. McMillin and John C. Alishouse, NOAA/NESDIS, Washington, D.C.

*Abstract available; see p. 428.

**Manuscript not available; if received in time, it will appear at back of book.
NIMBUS-7 SMMR DERIVED SEA-ICE CONCENTRATIONS OVER ANTARCTICA.
Ralph R. Ferraro and E. R. Major, Research and Data Systems Corp.,
Lanham, Md.; and J. D'Aguanno and J. D. Tarpley, NOAA/NESDIS,
Washington, D.C.

MODELLING OF SURFACE WAVES AND SEA STATE-DEPENDENT WIND STRESS
FOR THE NORTHEAST PACIFIC OCEAN USING SEASAT SCATTEROMETER DATA.
Hans C. Graber, K. A. Kelly and R. C. Beardsley, Woods Hole
Oceanographic Inst., Woods Hole, Mass.; and S. Hasselman, Max-Planck

WIND AND WIND STRESS CURL FIELDS FOR THE NORTHEAST PACIFIC OCEAN
USING SATELLITE SCATTEROMETER DATA. Kathryn A. Kelly, Hans C. Graber
and Robert C. Beardsley, Woods Hole Oceanographic Inst. Woods Hole,
Mass.

SESSION J9: JOINT WITH 7 OCEAN-ATMOSPHERE CONFERENCE
Chairperson: Andreas K. Goroch, NEPRF, Monterey, Calif.

J9.1 X-BAND SCATTEROMETER MEASUREMENTS AT LOW WINDS IN A WAVETANK.
Mary Ruth Keller and William J. Plant, Naval Research Lab.,
Washington, D.C.

J9.2 USING SATELLITE SCATTEROMETER DETERMINED WINDFIELDS TO OBTAIN
SYNOPTIC-SCALE SURFACE PRESSURE FIELDS. R. A. Brown, Univ. of
Washington, Seattle, Wash.

J9.3 DETERMINING EQUIVALENT DEPTHS OF THE ATMOSPHERIC BOUNDARY LAYER OVER
THE OCEANS. Tsann-wang Yu, NOAA/NSW/NMC, Washington, D.C.

J9.4 MARINE BOUNDARY LAYER DEPTH AND HUMIDITY ESTIMATION FROM SATELLITE
MEASURED OPTICAL DEPTH AND TOTAL WATER CONTENT. P. A. Durkee, R. Kren
and S. Smolinski, Naval Postgraduate School, Monterey, Calif.

J9.5 MESOSCALE SATELLITE DERIVED TEMPERATURE AND HUMIDITY PROFILES FOR
THE FASINEX CAMPAIGN: COMPARISONS WITH CONVENTIONAL PRODUCTS. Claire
Levy, F. M. Breon, A. Chedin and N. A. Scott, Ecole Polytechnique,
Palaiseau, France

J9.6 HURRICANE-OCEAN INTERACTION NEAR THE SUBTROPICAL FRONT. Peter G.
Black, NOAA/Atlantic Oceanographic and Marine Labs (AOML), Miami, Fla.

J9.7 INFLUENCE OF SFA SURFACE TEMPERATURE ON INTRA- AND INTER-ANNUAL
VARIATIONS OF ITCZ. Jaime M. Daniels, ST Systems Corp., Lanham; and
Anandu V. Vernekar, Univ. of Maryland, College Park, Md.

Please note: In an attempt to save space in the
Table of Contents multiple authors have been grouped
according to affiliation. For the correct order, please
refer to the paper.

*Abstract available; see p. 428.
**Manuscript not available; if received in time, it will appear at back of book.