Table of Contents

FORWARD

KEYNOTE ADDRESS

THE SPECTRUM OF MICROALLOYED HIGH STRENGTH LOW ALLOY STEELS

F. B. Pickering, Sheffield City Polytechnic, Sheffield, England

I RECENT ADVANCES IN ALLOY DESIGN AND THERMOMECHANICAL TREATMENT

Lead Presentation

RECENT INNOVATIONS IN ALLOY DESIGN AND PROCESSING OF MICROALLOYED STEELS

W. Roberts, Swedish Institute for Metals Research, Sweden

TMT Process Design

PREDICTION OF MICROSTRUCTURE DEVELOPMENT DURING RECRYSTALLIZATION HOT ROLLING OF Ti-V STEELS

ACHIEVING GRAIN REFINEMENT THROUGH RECRYSTALLIZATION CONTROLLED ROLLING AND CONTROLLED COOLING IN V-Ti-N MICROALLOYED STEELS

Y. Zheng, G. Fitzsimons, A. J. DeArdo, University of Pittsburgh, USA

THE EFFECTS OF ACCELERATED PROCESSING ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF V- AND (V + Cb) - HSLA STEELS

D. M. Fegredo, M. J. Stewart, J. D. Boyd, Canada Centre for Mineral & Energy Technology, Canada

PROCESS DESIGN AND PREDICTION FOR CONTROLLED ROLLING OF THICK-GAUGE HSLA PLATE

C. E. Ruddle, D. L. Baragar, A. F. Crawley, Canada Centre for Mineral & Energy Technology, Canada

DIRECT QUENCHING OF LOW CARBON STEEL PLATES

A. Sjostrom, M. Jarl, MEFO, Sweden

TMT Alloy Design

DEVELOPMENT AND CHARACTERIZATION OF A NEW FAMILY OF COPPER-CONTAINING HSLA STEELS

M. R. Krishnadev, Universite Laval, Canada

INFLUENCE OF MULTIPLE MICROALLOY ADDITIONS ON THE FLOW STRESS AND RECRYSTALLIZATION BEHAVIOR OF HSLA STEELS

M. G. Akben, J. J. Jonas, McGill University, Canada

MICROALLOYED PEARLITIC STEELS FOR THE WIRE INDUSTRY: MECHANISMS OF ALLOY ELEMENT REDISTRIBUTION AND STRENGTHENING PROCESSES IN Cr-V EUTECTOID STEELS

DEVELOPMENT AND MECHANICAL PROPERTIES OF AS-ROLLED EXTRA LOW CARBON Fe4Mn-1.0 Si HSLA "MAR" STEELS

A. K. Patwardhan, University of Roorkee, India

Continuously Annealed Strip, Formability and Fatigue Properties

CONTINUOUSLY ANNEALED COLD-ROLLED MICROALLOYED STEELS WITH DIFFERENT MICROSTRUCTURES

R. R. Pradhan, Bethlehem Steel Corporation, USA

LABORATORY AND PRODUCTION EXPERIENCE WITH Cb-Ti STEELS FOR HSLA HOT ROLLED SHEET

P. E. Repas, United States Steel Corporation, USA

EFFECT OF COLD FORMING ON THE STRAIN-CONTROLLED FATIGUE PROPERTIES OF HSLA STEEL SHEETS

J. M. Holt, P. L. Charpentier, United States Steel Corporation, USA
INFLUENCE OF NON-LINEAR STRAIN PATHS ON THE FORMING LIMIT DIAGRAMS OF A DEEP DRAWING QUALITY
STEEL AND A DUAL PHASE STEEL ... 223
E. Schedin, A. Melander, R. Lagneborg, Swedish Institute for Metals Research, Sweden

METALLURGY OF HIGH STRENGTH COLD-ROLLED STEEL SHEETS 239
S. R. Goodman, United States Steel Corporation, USA

FORMABLE HOT-ROLLED STEEL WITH INCREASED STRENGTH 253
T. Nilsson, Svenskt Stal Domnarvet, Sweden

TITANIUM MICROALLOYED HOT ROLLED STRIP STEELS—PRODUCTION, PROPERTIES AND APPLICATIONS 261
J. G. Williams, Australian Iron & Steel Pty. Ltd., Australia

Dual Phase Steels

EVOLUTION OF MULTIPHASE STRUCTURES AND THEIR INFLUENCE ON MECHANICAL PROPERTIES OF LOW CARBON
STEELS ... 277
N. J. Kim, University of Wyoming, USA; G. Thomas, Lawrence Berkeley Laboratory, USA

PRODUCTION OF AS-HOT-ROLLED DUAL PHASE SHEETS BY CONTROLLED COOLING 287
J. Mano, T. Kato, N. Aoyagi, M. Kuwagata, Kawasaki Steel Corporation, Japan

DUAL-PHASE SHEET PRODUCED FROM COLD-ROLLED, MICROALLOYED STEELS 297
G. Krauss, D. K. Matlock, Colorado School of Mines, USA; A. E. Cornford, Dofasco, Inc., Canada

MECHANICAL - FORMING PROPERTIES AND THE MICROSTRUCTURES OF DIRECT OFF THE ROLLING MILL PROCESSED
DUAL PHASE STEELS .. 329
C. M. Vlad, G. Ahrndt, K. Hulka, Stahl Werke Peine Salzgitter, Germany

A NEW EXPRESSION FOR THE STRENGTH OF MARTENSITE PLUS FERRITE DUAL PHASE STEELS 341
H. P. Shen, T. C. Lei, Harbin Institute of Technology, Peoples Republic of China

STUDY OF DEFORMATION CHARACTERISTICS OF Mn-V DUAL PHASE STEEL 351
M. Mingtu, W. Degen, W. Baorong, Central Iron & Steel Research Institute, Peoples Republic
of China

II STEELMAKING AND CASTING TECHNOLOGY

Lead Presentation

METALLURGICAL REQUIREMENTS IN THE PRODUCTION OF HSLA STEELS 359
R. Hammer, and R. W. Simon Thyssen Stahl AG, Duisburg, Germany

Steel Refinement and Continuous Casting

REFINING AND CONTINUOUS CASTING FOR PRODUCING HIGH QUALITY HSLA STEELS 377
Y. Habu, T. Nozaki, Y. Yoshii, S. Itoyama, K. Mishikawa, T. Imai, Kawasaki Steel Corporation,
Japan

AOD REFINING FOR HSLA STEELS ... 389
S. K. Mehlman, L. J. Hagerty, R. J. Selines, Union Carbide Linde Division, USA

THE TECHNOLOGY OF CONTINUOUS CASTING FOR THE APPLICATION OF HSLA STEELS 403
K. Ushijima, S. Shiode, M. Hashio, S. Yamaguchi, H. Tomono, Sumitomo Metal Industries, Ltd.,
Japan

COMPOSITIONAL CONTROL BEFORE AND DURING CONTINUOUS CASTING OF HIGH-STRENGTH LOW ALLOY STEELS . . 411
I. D. Sommerville, A. McLean, University of Toronto, Canada

Inclusion Characterization and Property Effects

CHARACTERIZING INCLUSION SHAPE CONTROL IN LOW-SULFUR C-Mn-Cb STEELS 419
A. D. Wilson, Lukens Steel Company, USA

EDGE FORMABILITY PROPERTIES OF A HOT ROLLED HSLA STEEL DESULFURIZED BY VARIOUS METHODS 429
D. Bhattacharya, R. S. Patil, Inland Steel Company, USA
HSLA STEEL WITH HIGH WELDABILITY AND IMPROVED CHARACTERISTICS OBTAINED THROUGH VACUUM HEATED LADLE REFINING TECHNIQUE 443
R. Blondeau, G. M. Pressouyre, J. Maniere, L. Cadiou, Creusot-Loire, France

Future Trends

SOME THOUGHTS ON STEELMAKING TECHNOLOGY IN THE YEAR 2000 .. 449
J. Szekely, Massachusetts Institute of Technology, USA

III COLD AND HOT ROLLED SHEET PRODUCTS

Lead Presentation

HIGH STRENGTH SHEET STEELS - APPLICATIONS, PROBLEMS AND POTENTIAL 455
W. E. Dennis, American Iron & Steel Institute, USA

Applications

A NEW HSLA STEEL FOR AN AUTOMOTIVE STEERING COUPLING COMPONENT 459
D. A. Wilkinson, D. D. Rogers, General Motors Corporation, USA

FORMING PROBLEMS ENCOUNTERED IN APPLICATION OF HIGH STRENGTH STEELS TO AUTOMOTIVE COMPONENTS 467
R. G. Davies, Ford Motor Company, USA

HIGH STRENGTH LOW ALLOY STEELS IN AUTOMOTIVE STRUCTURES 475
S. Dinda, C. Belleau, D. K. Kelley, Chrysler Engineering, USA

COLD AND HOT-ROLLED MICROALLOYED STEEL SHEETS IN OPEL CARS - EXPERIENCE AND APPLICATIONS 485
K. E. Richter, Opel, A. G., Germany

CRITERIA OF HIGH STRENGTH STEELS FOR APPLYING TO AUTOMOBILE FRAME COMPONENTS 493
M. Takahashi, S. Sato, M. Yamane, K. Kawasaki, Toyo Kogyo Co., Ltd., Japan

APPLICATION OF HIGHER STRENGTH STEEL SHEETS AND ITS PROCESS IN NISSAN MOTOR COMPANY 503
K. Tamura, M. Shiokawa, Nissan Motor Co., Ltd., Japan

ROLL FORMING HSLA STEELS ... 515
G. T. Halmos, Delta Engineering, Ltd., Canada

AUTOMOTIVE APPLICATION OF ULTRA-HIGH STRENGTH SHEET STEEL 523
J. C. Kopchick, General Motors Corporation, USA

Properties

RESTRICTED YIELD STRENGTH VARIATION IN HIGH STRENGTH LOW ALLOY STEELS 531
E. Hamburg, Jones & Laughlin Steel Corporation, USA

DESIGN-RELATED METHODOLOGY TO DETERMINE THE FATIGUE LIFE AND RELATED FAILURE MODE OF SPOT-WELDED SHEET STEELS ... 539
J. A. Davidson, United States Steel Corporation, USA

WELD FATIGUE OF TIG-DRESSED SAE 980X HSLA STEEL .. 553
Kon-Mei Ewing, General Motors Corporation, USA

NEAR THRESHOLD FATIGUE BEHAVIOR OF HSLA STEELS .. 565
K. A. Esaklul, W. W. Gerberich, J. P. Lucas, University of Minnesota, USA

INFLUENCE OF COMPOSITION WITHIN A GRADE ON THE FATIGUE PROPERTIES OF HSLA STEELS 579
S. P. Bhat, Inland Steel Research, USA

IV PLATE PRODUCTS

Lead Presentation

RECENT DEVELOPMENT OF MICROALLOYED STEEL PLATES ... 593
I. Kozasu, Nippon Kokan, K. K., Japan
TOUGH AS-ROLLED HEAVY GAGE PLATE STEEL
M. Barnett, C. Roper, Lukens Steel Company, USA

PROCESSING CHARACTERISTICS AND PROPERTIES OF Ti-V-N STEELS
T. Siwecki, A. Sandberg, W. Roberts, Swedish Institute for Metals Research, Sweden

HIGH STRENGTH TITANIUM STEELS FOR COLD FORMABILITY - PRACTICAL WAY TO PREDICT THE MECHANICAL PROPERTIES OF HOT-ROLLED TITANIUM STEELS
J. C. Herman, V. Leroy, Centre de Recherches Metallurgiques, Belgium

APPLICATIONS OF MULTIPURPOSE ACCELERATED COOLING SYSTEM (MACS) TO THE PRODUCTION OF HSLA STEEL PLATE
C. Chiga, K. Amano, T. Enami, M. Tanaka, R. Tarui, Kawasaki Steel Corporation, Japan

MECHANICAL PROPERTIES AND PRECIPITATION HARDENING RESPONSE IN ASTM A710 GRADE A AND A736 ALLOY STEEL PLATES
R. J. Jesseman, G. J. Murphy, Armco, Inc., USA

NEWLY DEVELOPED 80 kgf/mm² CLASS HIGH-STRENGTH QUENCHED AND TEMPERED STEEL PLATES WITH HEAVY SECTIONS
R. Yamaba, K. Hattori, K. Okamoto, H. Nakao, K. Ito, Nippon Steel Corporation, Japan

HSLA STEELS FOR NAVAL SHIP CONSTRUCTION (paper not available)
E. Czyryca, T. Montemarano, T. Caton, R. Brenna, R. McCaw, David Taylor Naval Ship Research & Development Center, USA

Weldability of HSLA Steel Plates
THE STRUCTURE AND TOUGHNESS OF THE WELD HEAT-AFFECTED ZONE OF A C-Mn-V STEEL
J. T. Bowker, R. B. Lazor, A. G. Glover, Energy, Mines & Resources Canada, Canada

MECHANICAL PROPERTIES AND PHYSICAL METALLURGY OF HSLA STEEL LASER BEAM WELDMENTS
P. E. Denney, E. A. Metzbower, U. S. Naval Research Laboratory, USA

IMPROVEMENT OF TOUGHNESS IN THE HAZ OF HIGH-HEAT-INPUT WELDS IN SHIP STEELS
L. J. Cuddy, J. S. Lally, United States Steel Corporation, USA

EFFECT OF THERMAL PROCESS VARIATIONS ON THE MECHANICAL PROPERTIES AND MICROSTRUCTURE OF A PRECIPITATION HARDENING HSLA STEEL
G. E. Hicho, S. Singhal, R. J. Fields, National Bureau of Standards, USA

V LINEPIPE

Lead Presentation

PIPELINE DESIGN AND THE ROLE OF REGULATIONS
B. L. Jones, Niobium Products Co., USA

Linepipe for Severe Environments

DEVELOPMENT OF SUPER TOUGH AICULAR FERRITE STEEL FOR LINEPIPE -- OPTIMIZATION OF CARBON AND NIOBUM CONTENT IN LAM-CARBON STEEL
T. Taira, K. Matsumoto, Y. Kobayashi, K. Takeshige, I. Kozasu, Fukuyama Research Laboratories, Japan

MECHANICAL AND TOUGHNESS PROPERTIES OF SEPARATION-FREE HSLA LINE-PIPE STEELS FOR ARCTIC CONDITIONS

HEATED COOLING AFTER CONTROL ROLLING OF LINE-PIPE PLATES INFLUENCE OF PROCESS CONDITIONS
P. Tufalini, M. Pontremoli, A. DeVito, A. Aprile, Centro Sperimentale Metallurgico S.P.A., Italy
MICROSTRUCTURES AND PROPERTIES OF CONTROLLED ROLLED AND ACCELERATED COOLED MOLYBDENUM-CONTAINING LINE-PIPE STEELS
T. G. Oakwood, A. P. Coldren, G. Tither, Climax Molybdenum Co. of Michigan, USA

OPTIMIZATION OF COMPOSITION AND PROCESSING TO SATISFY X-70 LINEPIPE PROPERTY REQUIREMENTS
H. Abrams, S. S. Hansen, Bethlehem Steel Corporation, USA

RESEARCH WORKS ON NIOBium, MOLYBDENUM AND VANADiUM STEELS FOR LARGE SIZE STRUCTURAL PIPELINES
P. Ianc, N. Dragan, B. Irimonescu, Institutul de Cercetari Metalurgice, Romania

RELATIONSHIP BETWEEN MICROSTRUCTURE AND MECHANICAL PROPERTIES OF THERMO-MECHANICALLY TREATED LARGE DIAMETER PIPE STEELS
M. K. Graef, P. A. Peters, P. Schwaab, Mannesmannrohr Muelheimruhr, Germany

MECHANISM OF HYDROGEN INDUCED CRACKING IN PIPELINE STEELS
C. L. Jones, P. Rodgerson, A. Brown, British Gas Corporation, England

HSLA STEELS WITH IMPROVED HYDROGEN SULFIDE CRACKING RESISTANCE
G. M. Pressouyre, R. Blondeau, J. Goulot, J. Maniere, L. Cadiou, Creusot-Loire, France

INFLUENCE OF METALLURGICAL FACTORS ON HIC OF HIGH STRENGTH ERW LINE PIPE FOR SOUR GAS SERVICE
K. Yamada, H. Murayama, Y. Satah, Z. Chano, N. Tanaka, K. Itoh, Nippon Steel Corporation, Japan

DEVELOPMENT OF LOW Pcm HIGH GRADE LINE-PIPE FOR ARTIC SERVICE AND SOUR ENVIRONMENT
H. Ohtani, T. Hashimoto, T. Sawamura, K. Bessyo, T. Kyogoku, Sumitomo Metal Industries, Ltd., Japan

DEVELOPMENT OF C-90 GRADE CASING FOR SOUR SERVICE (paper not available)
C. D. Kim, D. N. Volk, United States Steel Corporation, USA

Advances in Linepipe Fabrication and Welding

INDUCTION BENDING OF X GRADE LINE-PIPE STEEL FOR ARTIC SERVICE
C. Youngren, R. Hipley, ARCO Oil & Gas Company, USA

HSLA STEEL APPLICATIONS IN THE DEVELOPMENT OF DUC TYRA GAS FIELDS IN THE DANISH NORTH SEA SECTOR
A. Ostrowski, Dansk Boreselsakab A/S Denmark

THE NORTHERN BORDER PIPELINE
D. L. Johnson, Internorth, Inc., USA

THE EFFECT OF MICROALLOY ADDITIONS ON THE HEAT AFFECTED ZONE NOTCH TOUGHNESS OF A C-Mn-Mo LINE-PIPE STEEL
D. B. McCutcheon, Stelco, Canada; J. T. McGrath, M. J. Godden, G. E. Ruddle, Canada Centre for Mineral & Energy Technology, Canada; J. D. Embury, McMaster University, Canada

SUBMERGED ARC WELD METAL TOUGHNESS IN MICROALLOYED LINEPIPE STEELS - THE EFFECTS OF POST WELD HEAT TREATMENT
N. H. Croft, University of California, USA; J. M. Gray, Microalloying International, USA; A. J. DeArdo, University of Pittsburgh, USA

PHYSICAL METALLURGY, PROPERTIES AND WELDABILITY OF PIPE LINE STEELS WITH VARIOUS NI0BIUM CONTENTS
K. Hulka, F. Heisterkamp, Niobium Products Company, Germany

WELDING OF HSLA PIPE STEELS IN PIPELINE CONSTRUCTION - THE STAGE OF DEVELOPMENT, TRENDS AND CONCLUSIONS
J. Crosse-Woerdemann, Thyssen Draht A. G., Germany

THE TOUGHNESS PROPERTIES OF GIRTH WELDS IN MODERN PIPELINE STEELS
A. B. Rothwell, D. V. Dorling, NOVA - An Alberta Corporation, Canada
ERW LINEPIPE: THE EFFECT OF WELDING AND ANNEALING UPON THE PROPERTIES, MICROSTRUCTURE AND CORROSION RESISTANCE ... 957
W. E. Heitzmann, P. D. Southwick, Inland Steel Research Laboratories, USA; F. Paustic, ACIPO, USA

VI BARS, FORGINGS, RAIL STEELs AND CASTINGS

Lead Presentation

PROPERTY IMPROVEMENTS IN BARS AND FORGINGS THROUGH MICROALLOYING AND INCLUSION ENGINEERING ... 967
J. M. Gray, S. V. Subramanian, D. A. R. Kay, Microalloying International, USA

HSLA STEELS IN WIRE ROD AND BAR APPLICATIONS .. 981
B. Heritier, P. Maitrepiere, J. Rofes-Vernis, A. Syckaert, Ugine Aciers, France

PROPERTIES OF LOW-CARBON AS ROLLED STEEL BARS FOR MACHINE AND STRUCTURAL USE ... 991
H. Ohtani, F. Nakasato, Sumitomo Metal Industries, Ltd., Japan

MICROSTRUCTURES AND MECHANICAL PROPERTIES OF SEQUENTIAL QUENCHED AND TEMPERED HSLA WIRE ROD AND BAR STEELS FROM ROLLING HEAT .. 1003
U. Feldmann, C. M. Vlad, K. Klimpel, Stahl Werke Peine Salzgitter AG, Germany

PRECIPITATION STRENGTHENED SPRING STEEL FOR AUTOMOTIVE SUSPENSIONS ... 1017
T. Yamamoto, R. Kobayashi, Aichi Steel Works Ltd., Aichi, Japan; T. Ozone, M. Kurimoto, Chuo Spring Co., Ltd., Aichi, Japan

POSSIBILITIES OF USING DISPERSOID STEELS (BARS OR WIRE) FOR AUTOMOBILE CONSTRUCTION ... 1025
L. Becker and F. Charlier, Societe des Aciers Fins de l'Est; B. G. Criqui and R. el Haik, Regie Nationale des Usine Renault, France

THE NEWLY DEVELOPED CONCRETE REINFORCING BARS FOR CRYOCENIC USE ... 1037
H. Ohtani, F. Nakasato, K. Nishida, Y. Kamada, Sumitomo Metal Industries, Ltd., Japan

HSLA REINFORCING BAR — A SURVEY OF PRODUCTION PRACTICE AND APPLICATIONS IN ARGENTINA (paper not available) A. M. Hey, A. Szmanowski, Comision Nacional de Energia Atomica, Argentina

CONCRETE AND TUBE STEELS MICROALLOYED BY VANADIUM AND NITROGEN ... 1049
R. Halbrstatova, T. Prnka, V. Smid, V. Navrat, Iron & Steel Research Institute, Czechoslovakia

MICROALLOYED BAR FOR MACHINE STRUCTURAL USE ... 1063
T. Sampei, T. Abe, H. Osuzu, I. Kozasu, Nippon Kokan, K. K., Japan

DEVELOPMENT OF MICROALLOYED MEDIUM CARBON HOT ROLLED BAR PRODUCTS ... 1071
J. F. Held, B. A. Lauer, Jones & Laughlin Steel Corporation, Pittsburgh, Pennsylvania

EFFECTS OF THICKNESS ON THE THERMOECHANICAL RESPONSE OF A FORGED LOW CARBON MICROALLOYED STEEL ... 1081
H. Luthy, A. Oberli, W. Form, University de Neuchatel, Switzerland

MECHANICAL PROPERTIES AND MACHINABILITY OF A HIGH STRENGTH, MEDIUM CARBON, MICROALLOYED STEEL ... 1101
V. Ollilainen, H. Hurmola, H. Pontinen, Ovako Oy, A. B., Finland

APPLICATION OF HSLA STEELS FOR BEAMS AND SMALL FLATS ... 1115
C. E. Grip, J. O. Sperle, Svenskt Stal, Sweden

MICROALLOYING AND PRECIPITATION IN Cr-V RAIL STEELS ... 1129
J. D. Boyd, T. Malis, D. E. Parsons, Canada Centre for Mineral & Energy Technology, Canada

PRINCIPLES, PROPERTIES AND APPLICATIONS OF TOUGH, HIGH STRENGTH STEEL CASTINGS ... 1137
D. L. Albright, S. Bechet, K. Rohrig, Climax Molybdenum Company of Michigan, USA

THERMAL, METALLURGICAL AND MECHANICAL ASPECTS OF DISPERSOID CENTRIFUGALLY CAST STEELS ... 1155
T. Toll-Duchanoy, G. Metauer, C. Frantz, M. Gantois, Ecole de Mines, France; S. Vasseur, P. Camelin, A. Royer, Pont-a-Mousson, France

SUMMATION ... 1171