ANALYTICAL ELECTRON MICROSCOPY
1987

D. C. Joy

Editor

Proceedings of a Workshop
Held at
Kona, Hawaii, 13-17 July 1987

Sponsored by
Microbeam Analysis Society
In association with the
Japanese Society for the Promotion of Science
Australian Microbeam Analysis Society

San Francisco Press, Inc.
Box 6800, San Francisco, CA 94101-6800
Table of Contents*

1A. PHASE TRANSFORMATIONS: GENERAL (A. D. Romig Jr.), 1
Aaronson, Furuhara, Fundamentals of first order diffusional phase transformations: A physical metallurgical viewpoint, 3
Goldstein, Application of AEM to diffusion-controlled phase transformations, 15
Guan, Liu, Notis, Williams, X-ray microanalysis of solute redistribution during diffusion-induced grain boundary migration, 19
Vitek, David, Time-dependent composition behavior of precipitates in aged stainless steels, 21
Romig, Cieslak, Solute segregation to phase interfaces and grain boundaries: Studies by analytical electron microscopy and profile deconvolution, 25

1B. PHASE TRANSFORMATIONS IN CERAMICS (C. E. Lyman and M. R. Notis), 30
Hannink, Muddle, Stress-induced phase transformations in ceria-zirconia, 30
Sabatini, Heald, Suenaga, Moodenbaugh, Jones, An analytical electron microscopy study of high-Tc superconductors, 33
Dravid, Notis, Lyman, Analytical and high-resolution electron microscopy of interphase interfaces in zirconia-based eutectics, 35
Snow, Precipitation and coarsening of rare-earth oxides in rapidly solidified alpha titanium alloys, 38
Drennan, Trigg, Analytical electron microscopy of the glass phases observed in yttrium O'-SIALON, 41
Sklad, Angelini, McHargue, White, An analytical electron microscopy investigation of amorphous structures in ion-implanted Al2O3, 45
Plummer, Donlon, McCune, Microstructural evaluation of aluminum nitride formation by ion implantation, 49
Smith, Mackinnon, Analytical electron microscope investigation of boron carbide microstructures at elevated temperatures, 53
Fitzgerald, McHardy, An electron spectroscopy and electron microscopy study of metal diffusion in amorphous chalcogenides, 56

1C. PHASE TRANSFORMATIONS IN METALS (D. B. Williams), 59
Alexander, Laughlin, AEM determination of composition profiles formed during cellular precipitation in Ni-In alloys, 61
Enomoto, Reynolds, Aaronson, Influence of alloying element distribution within and very near a/y boundaries upon ferrite growth kinetics and composition in Fe-C-X alloys, 65
Newkirk, Willendorf, Nanocrystalline iron films grown by CVD, 69
Bentley, Miller, Phase transformations in aged CF 8 and CF 8M stainless steels, 73
Kenik, Godbole, Lowndes, Pedraza, Pedraza, Structure of rapidly solidified Ni-Ti, 76
Donlon, Plummer, Allison, Characterization of rapidly solidified Al-8Fe-2Mo and Al-8Fe-1.5V-1.5Si alloys, 79
Kamenetzky, Meng, Tanner, Johnson, An AEM study of the solid-state nucleation of metallic glass at grain boundaries, 83
Kim, Kelley, Amorphous solidification of submicron droplets of iron and iron-nickel alloys, 87
FitzGerald, Withers, Stewart, Relationships between decagonal and crystalline phases in the Al-Mn system, 91

2. MEDIUM-VOLTAGE AEM (W. A. P. Nicholson), 95
Paterson, Nicholson, Chapman, Geiss, Investigation of cross-section models for x-ray production by electrons of kinetic energy of 80-200 keV, 96
Krishnan, Echer, Determination of UTW KXSI Factors for low-atomic-number microanalysis: A systematic approach, 99
Klein, Williams, Ayer, The effect of electron gun characteristics on probe size and gun brightness in analytical electron microscopy, 103
Severy, Angelini, Hessein, Zanchi, EXELFS analyses at 300 kV and 1 MV, 106
Bando, Kitami, Sakai, Izumi, Combined use of lattice imaging and microanalysis in structure determination of AlN-related polytype by a 400kV high-resolution analytical electron microscopy, 109
Disko, Ayer, The effect of accelerating voltage on EELS quantification, 113
Bradley, Zaluzec, Calculated sputtering and atomic displacement cross sections for application to medium-voltage analytical electron microscopy, 117

3. CBED AND OTHER LOCAL-STRAIN MEASUREMENTS (D. Maher), 121
Kaufman, Conventional CBED: An overview, 121
Schaffer, Loretto, Smallman, Brooks, CBD of a new oxide phase in inconel alloy MA6000, 126
Vecchio, Williams, CBED and microanalysis evidence for the nnonicosahedral T2 (Al16Li2Cu) phase, 129

*An Author Index begins on p. 381.
Dass, Thomas, Convergent-beam electron diffraction studies of domains in rhombohedral phase of lead zirconate titanate ceramics, 132

Demczyk, Loughlin, Measurement of twin misorientation by use of first-order Laue rings in CBED patterns, 135

Mansfield, Conventional convergent beam electron diffraction: Is fingerprinting a viable interpretive approach?, 138

Eaglesham, Novel approaches to CBED: Branch structure effects in the HOLZ, 143

Bird, Novel approaches to CBED II: Interpretation of HOLZ intensities, 149

L'Ecuyer, Loretto, L'Espérance, Measurement of strain at Si-porous Si interfaces by use of CBM and CBD, 155

Spong, Williams, Use of dynamic TEM in the study of thermal and strain-induced effects on block copolymer microstructures, 159

Treadwell, Newham, Vaughan, Beyerlein, Rice, Stress and rhombohedral distortion in platelet faujasite-type zeolites, 161

Dravid, Lyman, Sung, Notis, Electron crystallography of calcium zirconate, 166

Sung, Williams, Convergent-beam electron diffraction studies of the strain field around a dislocation, 169

Vasudevan, Fraser, Convergent-beam electron diffraction at medium voltages, 173

Bird, Eaglesham, Fraser, Kaufman, Mansfield, Williams, Critical issues in CBED: Discussion, 176

4. BIOLOGICAL APPLICATIONS (D. E. Johnson), 178

4A. BIOLOGICAL APPLICATIONS: QUANTITATIVE IMAGING, 179

Ingram, LeFurgey, Davilla, Lamvik, Kopf, Mandel, Lieberman, Real-time quantitative elemental analysis and imaging in cells, 179

Leaman, Fiori, Biological applications of EELS and EDXS mapping, 184

Statham, Quantitative digital mapping with drift compensation, 187

Wong, Cantino, Wilkinson, Iizutsu, Johnson, Quantitative elemental analysis of digital x-ray images, 191

Sod, Crooker, Morrison, Imaging intracellular elemental distribution in biological samples by ion microscopy, 195

Dunlap, Kennedy, Joy, Bunn, Image analysis of ciliary dynein utilizing energy filtering at 200 kV, 199

Chabala, Levi-Setti, High-resolution chemical mapping of biological material by use of a heavy ion probe, 203

4B. BIOLOGICAL APPLICATIONS: ANALYTICAL TECHNIQUES, 209

Crozier, Egerton, Mass thickness determination by electron energy loss spectroscopy, 209

Rice, Crozier, Egerton, Control of mass loss in analytical electron microscopy, 213

5. EDS (D. Howitt), 217

Baker, Schulson, Michael, Effect of boron on the composition of grain boundaries in Ni$_3$Al, 218

Nockolds, The characteristic x-ray fluorescence correction in thin films: Present state of the art, 221

Zreiba, Kelley, Fluorescence correction for thin spheres, 223

Garratt-Reed, Furdanowicz, Self-absorption correction using the bremsstrahlung shape, 225

Williams, Steel, A standard Cr thin-film specimen to measure the x-ray peak-to-background ratio (according to the Fiori definition) in analytical electron microscopy, 228

Lyman, Michael, A sensitivity test for energy-dispersive x-ray spectrometry in the analytical electron microscope, 231

Howe, Basile, Prabhu, Hatalis, Minimum detectable solute concentration and accuracy of compositional analysis in atomic-resolution microscopy, 235

Rosson, Turner, White, Site identification of impurities in perovskite by ALCHEMI under zone-axis diffraction conditions, 239

Warr, Quantitative EDS microanalysis by spectrum stripping, 243

Zaluzec, EMMPDL: An electron microscopy and microanalysis public domain library, 245

Michael, Williams, Determination of migrating grain boundary diffusion coefficients in Al-4 wt%Cu, 249

6. ELS (C. H. Chen), 252

Chen, Use of plasmons for studies of materials, 253

Kundmann, Krivanek, Parallel EELS study of the dispersion of plasmons and d-band excitations in GaAs, 256

Krishnan, Study of novel graphite-like materials in B-C-N system by electron energy loss spectroscopy, 261

Angelini, Sevely, Hsein, Zanchi, EXELFS of amorphous and crystalline SiC, 267

Schatzschneider, Hohenegger, Electron compton scattering from polycrystalline aluminum, 270

Zaluzec, Spectral processing and quantitative analysis in electron energy loss spectroscopy by a digital-filter technique, 275
Liu, Williams, Spatial resolution limitations of electron energy loss spectra collected in the TEM mode, 280
Krivanek, Applications of a parallel-detection electron energy loss spectrometer, 283
Liu, Williams, Quantification of the Li content of Al$_3$(Zr,Li) particles by electron energy loss spectroscopy, 288
Zaluzec, Strauss, Naday, Sherman, A two-dimensional CCD-based system for parallel detection in EELS, 291
Tence, Bonnet, Colliex, Mory, EELS elemental mapping progress in quantitation and in sensitivity, 295
More, Bentley, Carter, Davis, Analytical electron microscopy characterization of boron in sintered α-SiC, 299

7A. SURFACE ANALYSIS - SAM (R. Shimizu), 303
Prutton, El Gomati, Walker, Quantitative imaging in the scanning Auger microscope, 304
Browning, Materials analysis by scanning Auger microscopy: Why the information crunch is needed, 311
Watson, Image processing for Auger electron analysis, 317

7B. SURFACE ANALYSIS - AES (M. Prutton), 321
Grant, Data processing for quantitative analysis in Auger electron spectroscopy, 321
Ohmura, Shimizu, Group research for quantitative Auger analysis by the VAMAS-SCA working group in Japan, 325
Koshikawa, Ichimura, Sekine, Goto, Shimizu, Quantitative AES analysis of Au-Cu alloys by use of E N(E) spectra, 330
Kurokawa, Shimizu, Ion-induced surface segregation in Al-Mg by ISS-AES sequential measurement, 333
Sakai, Sato, Ando, Buonaquisti, Wide-area Auger analysis of reed switch, 335
Farr, Hutchinson, Surface analysis of titanium-coated silicone-rubber biological implants, 337

7C. SURFACE ANALYSIS - ELECTRONS AND PHOTONS (C. J. Powell), 340
Bevolo, Reflected electron energy loss microscopy, 340
Madey, Radiation damage in Auger-electron spectroscopy and x-ray photoelectron spectroscopy, 345
Unguris, Celotta, Pierce, Hembree, Magnetic microstructure imaging using scanning electron microscopy with polarization analysis, 350
Welkie, Gerlach, Submicron magnetic domain imaging by use of a spin-polarizing analyzer on a scanning Auger microprobe, 353
Tanuma, Powell, Penn, Dependence of inelastic electron mean free paths on electron energy and material, 356
Inoue, Ohshima, Sugiyama, Nishigaki, Noda, Tamura, Simultaneous measurements of emitted photons and ions during ion sputtering: O$_2$/GaAs, O$_2$Ga, 359

7D. SURFACE ANALYSIS - SIMS (J. Grant), 361
Newbury, Surface imaging by secondary ion microscopy, 361
Satoh, Owari, Nihei, Submicron SIMS with parallel detection system, 367
Deline, Anomalous secondary ion energy discrimination in SIMS, 369
Kurosawa, Round-robin study of impurity analysis in GaAs crystals by SIMS, 371
Meeker, Huneke, Kaiser, Hitzman, Comparison of SNMS, SIMS, and AES sputter depth profiling for quantitative high-depth resolution analysis of thin layers and interfaces, 377

Author index, 381