EUROPEAN CONVENTION FOR CONSTRUCTIONAL STEELWORK
INTERNATIONAL ASSOCIATION
FOR BRIDGE AND STRUCTURAL ENGINEERING

STABILITY
OF
STEEL STRUCTURES

PRELIMINARY REPORT

LIEGE
13 - 14 - 15
APRIL 1977

Second International Colloquium

STRUCTURAL STABILITY RESEARCH COUNCIL
COLUMN RESEARCH COMMITTEE OF JAPAN
TABLE OF CONTENTS

THEME 1.- The Design Concept

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The influence of residual stresses on the stability of a steel member subjected to compression by Dan MATEESCU – Romania</td>
<td>5</td>
</tr>
<tr>
<td>Effect of initial imperfections on the elastic-plastic failure load of simple frames by Otto HALASZ – Hungary</td>
<td>13</td>
</tr>
<tr>
<td>A statistical approach to the problem of stability related to structural out-of-plumbs, by P.F. ADAMS, D. BEAULIEU – Canada</td>
<td>23</td>
</tr>
<tr>
<td>Prediction of weld shrinkage stresses in plated structures, by J.B. DWIGHT, J.D. WHITE – United Kingdom</td>
<td>31</td>
</tr>
<tr>
<td>Torsional rigidity of partially-yielded closed cross-sections by S. KOMATSU, T. SAKIMOTO – Japan</td>
<td>39</td>
</tr>
<tr>
<td>Experimental analysis of the influence of Luders-Hartmann lines on stability of steel members, by M. IVANYI – Hungary</td>
<td>45</td>
</tr>
</tbody>
</table>

THEME 2.- A. Geometrical and Cross-Sectional Properties

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column curve for cold-formed and welded steel tubular members by B. KATO – Japan</td>
<td>53</td>
</tr>
<tr>
<td>Studies of axially loaded fabricated tubular columns, by W.F. CHEN – U.S.A.</td>
<td>61</td>
</tr>
<tr>
<td>Investigation of the buckling strength of different types of structural hollow sections and comparison with the non-dimensional buckling curves of the E.C.C.S., by N.F. YEOMANS – United Kingdom</td>
<td>71</td>
</tr>
<tr>
<td>Centrally compressed high strength steel round and square tubes; theoretical and experimental investigations, by G. BALLIO, L. FINZI, C. URBANO – Italy</td>
<td>77</td>
</tr>
<tr>
<td>Buckling behaviour of aluminium-alloy extruded members, by F.M. MAZZOLANI, F. FREY, Belgium</td>
<td>85</td>
</tr>
<tr>
<td>Analysis of high strength steel bars under repeated axial loading, by F.M. MAZZOLANI, C. FAELLA – Italy</td>
<td>95</td>
</tr>
<tr>
<td>On the lateral bracing required for compression members, by C. MATSUI, K. YAGI – Japan</td>
<td>101</td>
</tr>
<tr>
<td>Reliable strength of compression members, by H. DJALALY – France</td>
<td>107</td>
</tr>
<tr>
<td>A probabilistic approach for checking safety of centrally loaded steel columns, by D. FRANGOPOL, Romania, NGUYEN DANG HUNG, Belgium</td>
<td>113</td>
</tr>
</tbody>
</table>

THEME 2.- B. Centrally Compressed Members

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column curve for cold-formed and welded steel tubular members by B. KATO – Japan</td>
<td>53</td>
</tr>
<tr>
<td>Studies of axially loaded fabricated tubular columns, by W.F. CHEN – U.S.A.</td>
<td>61</td>
</tr>
<tr>
<td>Investigation of the buckling strength of different types of structural hollow sections and comparison with the non-dimensional buckling curves of the E.C.C.S., by N.F. YEOMANS – United Kingdom</td>
<td>71</td>
</tr>
<tr>
<td>Centrally compressed high strength steel round and square tubes; theoretical and experimental investigations, by G. BALLIO, L. FINZI, C. URBANO – Italy</td>
<td>77</td>
</tr>
<tr>
<td>Buckling behaviour of aluminium-alloy extruded members, by F.M. MAZZOLANI, F. FREY, Belgium</td>
<td>85</td>
</tr>
<tr>
<td>Analysis of high strength steel bars under repeated axial loading, by F.M. MAZZOLANI, C. FAELLA – Italy</td>
<td>95</td>
</tr>
<tr>
<td>On the lateral bracing required for compression members, by C. MATSUI, K. YAGI – Japan</td>
<td>101</td>
</tr>
<tr>
<td>Reliable strength of compression members, by H. DJALALY – France</td>
<td>107</td>
</tr>
<tr>
<td>A probabilistic approach for checking safety of centrally loaded steel columns, by D. FRANGOPOL, Romania, NGUYEN DANG HUNG, Belgium</td>
<td>113</td>
</tr>
</tbody>
</table>
THEME 3.- A. Built-up Members

Some problems concerning design recommendations for centrally compressed built-up-members, by W. UHLMANN - Germany

A theoretical approach to the behaviour of centrally compressed built-up struts, by G. BALLIO, L. FINZI, R. ZANDONINI - Italy

The buckling of compound members consisting of two angles stitch-bolted together, by John SHORT - England

THEME 3.- B. Composite steel-concrete Members

The stability of composite beams in negative bending, by P. ANSOURIAN - Australia

Composite column design, by K. ROIK, H. BODE, R. BERGMANN - Germany

The design of composite columns for biaxial bending, by P.J. DOWLING, England, H.F. CHU, Hong-Kong, K.S. VIRDY, Australia

Reduction of the bearing capacity of concrete filled hollow sections due to local buckling, by J.P. GRIMAULT, France, J. JANSS, Belgium

THEME 4.- Beams - Lateral Buckling

A study of the allowable bending stress of steel beams, by T. SUZUKI, T. ONO, I. KUBODERA - Japan

Buckling curves for welded beams, by H. YOSHIDA - Japan

Use of a "modified slenderness" in the design of laterally unsupported beams, by D.A. NETHERCOT, J.C. TAYLOR - United Kingdom

Lateral buckling of beams under practical loadings and restraints, by B. KATO, H. AKIYAMA - Japan

Influence of realistic yield stress distributions on lateral torsional buckling loads, by J. LINDNER, D. BAMM - Germany

The ultimate load capacity of laterally unsupported beams subjected to equal and unequal terminal moments, by F.T. JARNOT, B.W. YOUNG, England

Lateral buckling in cantilever construction, by D. NIXON, P. F. ADAMS - Canada

A survey of tests on lateral buckling strength of beams, by Y. FUKUMOTO, M. KUBO - Japan

THEME 5.- Plate and Box Girders

Consideration on Basler's shear strength theory, by F. NISHINO, A. HASEGAWA - Japan
Czechoslovak approach to the design of longitudinally stiffened compression flanges of steel box-girder bridges, by J. DJUBEK, M. SKALOUD – C.S.S.R .. 249

Ultimate load analysis of the compression flange of a box girder, by C.A. CARLEN, T.H. SØREIDE, N.T. NORDSVE – Norway 257

The inelastic ultimate load of stiffened plate with stiffener failure, W.C. FOK, A.C. WALKER – United Kingdom .. 267

Comportement non-linéaire des plaques comprimées munies de raidisseurs en caisson, par Bertrand ROUVE – Suisse 273

Influence of web inclination on compression flange buckling, by A. BERGFELT – Sweden ... 279

Stability of stiffened compression flanges under in-plane forces and wheel loads, by K.S. CHAN, C.L. LAW, D.W. SMITH – United Kingdom 289

Imperfection sensitivity of steel plates under complex edge loading, P.J. DOWLING, P.A. FRIEZE, J.E. HARDING – United Kingdom 305

Collapse of rectangular outstands loaded in compression, by C.D. BRADFIELD – England ... 315

Shear tests on unstiffened plate girders, by F. FREY, R. ANSLIJN – Belgium ... 321

Experimental behaviour of two slender girders – a criterion for a “serviceability” limit load, by J. BROZZETTI ... 327

The improvement of the load carrying capacity of webs by means of appropriate residual stresses, by A. PLUMIER – Belgium 333

THEME 6.- Beam - Columns .. 337

Steel column design, by K. ROIK, R. BERGMANN – Deutschland 339

Web slenderness limits for beam-columns, by D.S. NASH, M.J. PERLYNN, G.L. KULAK – Canada ... 349

Design of box columns under biaxial bending, by W.F. CHEN – U.S.A 355

Boundary slendernesses for flexural torsional buckling of uniaxial eccentric loaded I-columns, by J. LINDNER, G. WIECHERT – Germany 363

The plastic deformation capacity of H-Columns at high axial loads, by A.R. GENT, T.K. SEN, England ... 373

Design of I-shaped beams and columns with diaphragm bracing, by S.J. ERRERA – U.S.A ... 383

Ultimate load of beam columns in aluminium alloys with longitudinal and transversal welds, by G. VALTINAT, R. MULLER, West Germany 393
THEME 7.- Interaction between local and general buckling

Limit state of compressed thin-walled steel columns with regard to the interaction between column and plate buckling, by M. SKALOUD, J. NAPRSTEK - Czechoslovakia 405

The interaction between lateral-torsional and local plate buckling in thin-walled beams, by A.J. REIS - Portugal, J. ROORDA - Canada 415

Interactive collapse of plate assemblages in relation to the strength of box girders, by R.S. PUTHLI, M.A. CRISFIELD, W.J. SUPPLE - United Kingdom 427

Elastic post-buckling behaviour of discretely stiffened plates, by A.K. BASU - India, P. DJAHANI, P.J. DOWLING - United Kingdom 433

Interaction behaviour of plain channel columns under concentric or eccentric loading, by J. RHODES, J.M. HARVEY - United Kingdom 439

THEME 8.- Triangulated structures 445

An experimental study of the influence of the connections of the transmission tower web-members on their buckling resistance, by M. LORIN, J.P. CUILLÉ - France 447

Contribution to chapter “Angles in lattice transmission towers”, by B.A. CAUZILLO - Italy 457

Model investigations on the loss of stability of the plate external layer in a regular bar space structure, by A. BIEGUS, Z. KOWAL - Poland 463

Ultimate strength of compression members with intermittent rigid or flexible lateral supports, by P. DUBAS - Switzerland 469

The behaviour of scaffold towers and assemblies under vertical, and under combined vertical and horizontal, loading, by E. LIGHTFOOT - England 475

Effects of web-members on lateral-torsional buckling of rigid truss beams, by S. MORINO, C. MATSUI, Y. NAJIMA - Japan 481

Determination of the effective lengths of web members in welded lattice girders in hollow sections, by J. MOUTY, J.P. GRIMAULT - France 491

THEME 9.- FRAMES 497

Stability and shakedown considerations in multi-storey sway frames designed for minimum weight, by M.R. HORNE, L.J. MORRIS - England 499

Determination of the out-of-plane buckling load of planar frames by the matrix displacement method, by G. LAGAE - Belgium 505

Accuracy of critical loads obtained using substitute frames, by F.W. WILLIAMS, W.P. HOWSON - United Kingdom 511

Stability of structures by considering initial imperfections in members, by H. GACHON, Y. GALEA - France 517
Some computer programs for inelastic buckling and for instability of planar frames, by J. BANOVEC, M. MARINCEK - Yugoslavia 523

Critical appraisal of the plastic design rules of ECCS on the basis of the numerical investigation of a braced 25-storey building, by Ch. MASSONNET, A. ANSLIJN, A. RIGON - Liège, Belgium 529

Stability of structural members in the French specifications for plastic design of steel structures, by Y. LESCOUARC'H - France 535

Stability of haunched rafters, by L.J. MORRIS, J.A. PACKER - England 539

Ultimate load carrying capacity of steel arches with initial imperfections, by T. SAKIMOTO, S. KOMATSU - Japan 545

In-plane strength of arch bridges subjected to vertical and lateral loads, by S. KURANISHI, T. YABUKI - Japan 551

Inelastic snap-through buckling of steel reticular tied arches, by A. FONTANA, F. SCIROCCO - Italy 557

THEME 10.- Shells 563

An engineering approach to the problems of plastic and elastic shells under axial pressure, by M.S. EL NASCHIE - Saudi Arabia 565

Buckling of circular cylindrical shells under combined axial compression and internal pressure, by H. SAAL - Germany 573

Buckling of axially compressed thin-walled cylindrical shells with asymmetric imperfections, by Bo L.O. EDLUND - Sweden 579

Some complements to the ECCS design code concerning isotropic cylinders, by M. ESSLINGER, B. GEIER - Germany, J.G.M. WOOD - England 589

Model investigation of the collapse of a steel water tower, by D. VANDEPITTE - Gent, Belgium 599

Use of computer programs Bosor 4 and 5 in the stability analysis of two civil engineering steel shell structures, by Ch. MASSONNET, R. BALTUS - Liège, Belgium 609

Some experimental results on the elastic-plastic buckling of thin torispherical and ellipsoidal shells subjected to internal pressure, by G.D. GALLETLY - England 619

The stability of buried shells under surface loading, by P.S. BULSON - England 627

THEME 11.- Special problems 633

Nonlinear analysis of metal structures, by F. FREY - Liège, Belgium 635

Dynamical plate buckling with structural damping, by P. SCHROEDER - Luxembourg 641
The stability of braced and unbraced frames at elevated temperatures,
by J. WITTEVEEN, L. TWILT, F.S.K. BIJLAARD - The Netherlands 647

APPENDIX TO THEME 5.- .. 657
Design of cold formed steel stiffened elements, by A. HASEGAWA, Japan
N.C. LIND - Canada ... 659