Durability of Concrete

Third International Conference
Nice, France 1994

V.M. Malhotra
Editor

Cover Sketch — Hibernia Offshore Drilling Platform
Courtesy of Hibernia Management and Development Company Ltd.
CONTENTS — PART I

Deicer Salt Scaling of Concrete, Freezing and Thawing Phenomenon, Performance of Concrete in Marine Environments, Corrosion of Steel to Chloride-Ion Attack, Other Topics

PREFACE ... iii

THE DEICER SALT SCALING DETERIORATION OF CONCRETE—AN OVERVIEW
by J. Marchand, E.J. Sellevold, and M. Pigeon ... 1

SCALING RESISTANCE OF GROUND GRANULATED BLAST FURNACE (GGBF) SLAG CONCRETES
by M.D. Luther, W.J. Mikols, A.J. DeMaio, and J.E. Whitlinger 47

INVESTIGATION OF ALTERNATE CONCRETE DEICERS
by P.P. Hudec, C. MacInnis, and S.P. McCann ... 65

W/CM CODE REQUIREMENTS INAPPROPRIATE FOR RESISTANCE TO DEICER SALT SCALING
by C.D. Johnston ... 85

DURABILITY OF CONCRETE STRUCTURES EXPOSED TO CaCl₂ BASED DEICING SALTS
by M. Collepardi, L. Coppola, and C. Pistolesi ... 107

CHLORIDE PERMEABILITY OF HIGH STRENGTH CONCRETE PLATFORMS IN THE NORTH SEA
by M. Sandvik, A.K. Haug, and O. Eriien ... 121

INFLUENCE OF THE CURING METHOD ON THE DURABILITY OF HIGH PERFORMANCE CONCRETES
by L. Hasni, J.L. Gallias, and M. Salomon ... 131

HIGH TEMPERATURE EFFECT ON HIGH PERFORMANCE CONCRETE (70-600 °C) STRENGTH AND POROSITY
by A.N. Noumowe, P. Clastres, G. Debicki, and M. Bolvin ... 157

LONG-TERM DURABILITY OF SPECIAL HIGH STRENGTH CONCRETES
by P. Nepper-Christensen, B.W. Kristensen, and T.H. Rasmussen 173

DURABILITY PROPERTIES OF HIGH STRENGTH CONCRETE CONTAINING SILICA FUME AND LIGNITE FLY ASH
by K.W. Nasser and S. Ghosh ... 191
CORROSION BEHAVIOURS OF STEEL EMBEDDED IN FLY ASH BLENDED CEMENTS
by H.T. Coo, L. Bucea, B. Wortley, and V. Sirivivatnanon 215

THE INFLUENCE OF FLY ASH ON THE RESISTIVITY AND RATE OF CORROSION OF
REINFORCED CONCRETE
by J.G. Cabrera and P. Ghoddoussi .. 229

COMPARATIVE EVALUATION OF CORROSION-INHIBITING CHEMICAL ADMIXTURES FOR
REINFORCED CONCRETE
by C.K. Nmai and P.D. Krauss .. 245

MINIMIZING CORROSION OF STEEL REINFORCEMENT—IMPLEMENTATION OF
RESEARCH INTO PRACTICE
by S. Guirguis, H.T. Cao, and D. Baweja ... 263

DESIGN FOR AVOIDING DAMAGE DUE TO CARBONATION-INDUCED CORROSION
by L.J. Parrott ... 283

USE OF LABORATORY TECHNIQUES TO EVALUATE LONG-TERM DURABILITY OF STEEL
REINFORCED CONCRETE EXPOSED TO CHLORIDE INGRESS
by N.S. Berke, M.C. Hicks, R.J. Hoopes, and P.G. Tourney 299

LONG-TERM PERFORMANCE OF PORTLAND AND BLENDED CEMENT CONCRETES UNDER
MARINE CONDITIONS
by H. Roper, V. Sirivivatnanon, and D. Baweja 331

TEN YEAR EXPOSURE TEST OF PRECRACKED REINFORCED CONCRETE IN
A MARINE ENVIRONMENT
by K. Sakai and S. Sasaki ... 353

MARINE CONCRETE DURABILITY—CONDITION SURVEY OF CERTAIN TENSILE CRACK
EXPOSURE BEAMS AT TREAT ISLAND, MAINE, USA

SWELLING OF CONCRETE IN DEEP SEAWATER
by J. Bijen and G. van der Wegen ... 389

DURABILITY OF HIGH ALUMINA CEMENT MORTARS FOR THE MARINE ENVIRONMENT
by N.C. Baker and P.F.G. Banfill ... 409

LONG TERM STUDY OF THE INFLUENCE OF THE MINERALOGICAL COMPOSITION
OF CEMENTS ON RESISTANCE TO SEAWATER: TESTS IN ARTIFICIAL SEAWATER
AND IN THE CHANNEL
by A.M. Paillère, M. Raverdy, and J.J. Serrano 423

viii
DURABILITY OF REPAIRED REINFORCED CONCRETE IN MARINE ENVIRONMENT
by T. Uomoto, H. Ohga, T. Yonezawa, and H. Ibe 445

THE EFFECT OF NON-LINEAR CHLORIDE BINDING ON THE PREDICTION OF CHLORIDE
PENETRATION INTO CONCRETE STRUCTURES
by L.O. Nilsson, M. Massat, and L. Tang ... 469

APPLICATION OF RAPID CHLORIDE PERMEABILITY TEST TO QUALITY CONTROL
OF CONCRETE

RESISTANCE TO PENETRATION OF CHLORIDES INTO CONCRETES CONTAINING LATEX,
FLY ASH, SLAG, AND SILICA FUME
by C. Ozyildirim ... 503

SIMULATION OF CHLORIDE PENETRATION INTO HARDENED CONCRETE
by T. Maruya, S. Tangtermsirikul, and Y. Matsuoka 519

PERFORMANCE OF PLAIN AND BLENDED CEMENTS IN HIGH CHLORIDE ENVIRONMENTS
by O.S.B. Al-Amoudi, Rasheeduzzafar, M. Maslehuddin, and S.N. Abduljauwad 539

A FIELD STUDY OF THE PENETRATION OF CHLORIDES AND OTHER IONS INTO A HIGH
QUALITY CONCRETE MARINE BRIDGE COLUMN
by P. Sandberg and L. Tang ... 557

DURABILITY OF LOADED REINFORCED CONCRETE IN CHLORIDE ENVIRONMENT
by R. Francois and G. Arliguie ... 573

EFFECT OF AN ELECTRICAL FIELD ON THE REMOVAL OF CHLORIDE IONS
FROM CONCRETE SLABS
by L. Tang, L. Berntsson, J. Aavik, and L.O. Nilsson 597

FREEZING AND THAWING DURABILITY OF CONCRETE BLOCK Pavers
by N. Ghaloori and R.P. Mathis .. 609

FREEZING AND THAWING DURABILITY OF AIR-ENTRAINED WET- AND DRY-MIX SHOTCRETE
INCORPORATING SILICA FUME
by B. Durand, J. Mirza, and P. Nguyen .. 623

A STUDY OF FROST RESISTANCE OF CONCRETE USING AN ORGANIC
SHRINKAGE-REDUCING AGENT
by H. Fujiwara, R. Tomita, and Y. Shimoyama 643
CONTENTS — PART II

Alkali-Aggregate Reactivity, Coatings for Concretes, Carbonation, High-Volume Fly Ash Concrete, Durability of Concrete

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALKALI-AGGREGATE REACTIVITY (AAR) POTENTIAL OF SELECTED CANADIAN AGGREGATES FOR USE IN OFFSHORE CONCRETE STRUCTURES by B. Fournier, V.M. Malhotra, W.S. Langley, and G.C. Hoff</td>
<td>657</td>
</tr>
<tr>
<td>AN ACCELERATED METHOD FOR THE EVALUATION OF ASR RISKS IN ACTUAL CONCRETE COMPOSITIONS by A. Criaud, C. Defossé, and V. Andrei</td>
<td>687</td>
</tr>
<tr>
<td>INFLUENCE OF MICROCRACKING ON THE ONSET AND DEVELOPMENT OF THE ALKALI SILICA REACTION by J.S. Guédon and A. Le Roux</td>
<td>713</td>
</tr>
<tr>
<td>RESULTS OF A ROUND ROBIN TEST PROGRAM FOR THE VALIDATION OF THE TEST METHODS IN THE FRENCH RECOMMENDATIONS FOR THE PREVENTION OF AAR DAMAGE TO CONCRETE by A. Corneille and B. Bollotte</td>
<td>725</td>
</tr>
<tr>
<td>DISTRIBUTION AND SIGNIFICANCE OF ALKALI-AGGREGATE REACTION IN SOUTHERN NORWAY by V. Jensen</td>
<td>741</td>
</tr>
<tr>
<td>AN ANALYTICAL STUDY CONCERNING PREDICTION OF CONCRETE EXPANSION DUE TO ALKALI-SILICA REACTION by Y. Furusawa, H. Ohga, and T. Uomoto</td>
<td>757</td>
</tr>
<tr>
<td>TEST METHODS FOR ALKALI-AGGREGATE REACTIONS IN NORWEGIAN AGGREGATES: PETROGRAPHIC EXAMINATION AND THE SOUTH AFRICAN NBRI MORTAR-BAR TEST by B.J. Wigum and J. Lindgård</td>
<td>781</td>
</tr>
<tr>
<td>INSPECTION AND REPAIR OF A CONCRETE WHARF by M. Maage, S. Helland, J.E. Carlsen, and M. Ranne</td>
<td>797</td>
</tr>
<tr>
<td>DURABILITY OF CONCRETE FOR EARLY OPENING OF REPAIRED HIGHWAYS—FIELD EVALUATION by M. Nagi, D. Janssen, and D. Whiting</td>
<td>811</td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>DURABILITY EVALUATION OF REPAIR MATERIALS IN HOT-ARID ENVIRONMENTS</td>
<td>I.A. Basunbul, H.A. Dehwah, and M. Maslehuddin</td>
</tr>
<tr>
<td>IN-SITU EVALUATION OF A FLEXIBLE SURFACE COATING FOR CONCRETE TO</td>
<td>T. Oshiro, R.N. Swamy, and S. Tanikawa</td>
</tr>
<tr>
<td>PREVENT CHLORIDE PENETRATION AND STEEL CORROSION</td>
<td></td>
</tr>
<tr>
<td>THE AGING BEHAVIOUR OF ZINC SPRAY COATING APPLIED FOR CATHODIC</td>
<td>P. Delpire, G. Grimaldi, and A. Raharinaivo</td>
</tr>
<tr>
<td>PROTECTION OF REINFORCED CONCRETE</td>
<td></td>
</tr>
<tr>
<td>THE INFLUENCE OF EARLY CURING ON THE SURFACE PERMEABILITY AND</td>
<td>S.A. Austin, P.J. Robins, and A.S.S. Al-Eesa</td>
</tr>
<tr>
<td>ABSORPTION OF SILICA FUME CONCRETE</td>
<td></td>
</tr>
<tr>
<td>STUDY OF CONCRETE CONTAINING SILICA FUME AND ACTIVATED AMORPHOUS</td>
<td>H. Tanaka</td>
</tr>
<tr>
<td>SILICA</td>
<td></td>
</tr>
<tr>
<td>THE RATE OF CARBONATION IN CONCRETE MADE WITH BLENDED CEMENT</td>
<td>K. Horiguchi, T. Chosokabe, T. Ikabata, and Y. Suzuki</td>
</tr>
<tr>
<td>MECHANISMS OF CONCRETE DETERIORATION BY SODIUM SULFATE CRYSTALLIZATION</td>
<td>K.J. Folliard and P. Sandberg</td>
</tr>
<tr>
<td>UNDERWATER FATIGUE PERFORMANCE OF STRUCTURAL LIGHTWEIGHT CONCRETE</td>
<td>V. Ramakrishnan, T.W. Bremner, and V.M. Malhotra</td>
</tr>
<tr>
<td>MECHANICAL AND DURABILITY PROPERTIES OF HIGH VOLUME FLY ASH CONCRETE</td>
<td>V. Sirivivatnanon, H.T. Cao, and P. Nelson</td>
</tr>
<tr>
<td>DURABILITY OF CONCRETE USING AIR-CLASSIFIED FLY ASH</td>
<td>M. Ishii, K. Ukita, and K. Kohno</td>
</tr>
<tr>
<td>DAMAGE DUE TO HYDRATION IN ROLLER COMPACTED CONCRETE: THE CASE OF</td>
<td>J.P. Bournazel and E. Bourdarot</td>
</tr>
<tr>
<td>THE RIOU DAM</td>
<td></td>
</tr>
<tr>
<td>AN EXPERIMENTAL DEVICE TO STUDY CRACKING AND DETERIORATION OF</td>
<td>D. Breysse, B. Gérard, and M. Lasne</td>
</tr>
<tr>
<td>CONCRETE</td>
<td></td>
</tr>
<tr>
<td>SURVEY OF WATER TOWERS, RESERVOIRS, TANKS, AND BASINS: THEIR</td>
<td>G. Mathieu and J. Sari</td>
</tr>
<tr>
<td>CONDITIONS AND THE WATERTIGHTNESS OF THE WATERPROOFING</td>
<td></td>
</tr>
<tr>
<td>THE INFLUENCE OF HEAT TREATMENT ON THE DURABILITY OF CONCRETE</td>
<td>M.S. Akman and H. Gülseren</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>