FOURTH SYMPOSIUM
ON
GLOBAL CHANGE STUDIES

January 17 - 22, 1993 Anaheim, California

Sponsored by
American Meteorological Society

Cosponsored by
World Meteorological Organization
Association of American Geographers
Ecological Society of America

Front Cover: Mean 1990 temperature relative to long-term temperature histories with locations of temperature observations from NOAA and spherically interpolated and analyzed by John A. Dutton. Figure produced by the Penn State Deasy Geographies Laboratory.

All Rights Reserved. No part of this publication may be reproduced or copied in any form or by any means --- graphic, electronic, or mechanical, including photocopying, taping, or information storage and retrieval systems --- without the prior written permission of the publisher. Contact AMS for permission pertaining to the overall collection. Authors retain their individual rights and should be contacted directly for permission to use their material separately. The manuscripts reproduced herein are unreferred papers presented at the Fourth Conference on Global Change Studies. Their appearance in this collection does not constitute formal publication.

AMERICAN METEOROLOGICAL SOCIETY
45 Beacon Street, Boston, Massachusetts USA 02108-3693
TABLE OF CONTENTS
4TH SYMPOSIUM ON GLOBAL CHANGE STUDIES

III FOREWORD
xiv AUTHOR INDEX

SESSION 1: CLIMATE AND HYDROLOGY: SIMULATION AND VALIDATION
Chairperson: Bette Otto-Bleisner, Univ. of Texas, Arlington, TX

1 1.1 INTERCOMPARISON OF VARIABILITY OF GLOBAL HYDROLOGIC CYCLE AT INTRASEASONAL TO INTERANNUAL TIME SCALES IN GENERAL CIRCULATION MODELS. W. K.-M. Lau, V. M. Mehta, and M. Fiorino, Lab. for Atmospheres, NASA/Goddard Space Flight Center (GSFC), Greenbelt, MD; and N.-C. Lau, NOAA/Geophysical Fluid Dynamics Lab. (GFDL), Princeton, NJ

3 1.2 GENESIS CLIMATE MODEL: INTERCOMPARISONS WITH MULTIPLE CLIMATE DATA BASES. F. R. Robertson, S. Goodman, and D. Fitzjarrald, NASA/Marshall Space Flight Center (MSFC), Huntsville, AL; E. J. Barron and B. Bishop, Penn State Univ., University Park, PA; J. Christy, Univ. of Alabama, Huntsville, AL; and S. Thompson and D. Pollard, NCAR, Boulder, CO

9 1.3 DEVELOPMENT AND INITIAL TEST OF THE UNIVERSITY OF WISCONSIN GLOBAL ISENTROPIC - SIGMA MODEL. T. H. Zapotocny, D. R. Johnson, and F. M. Reames, Univ. of Wisconsin, Madison, WI

15 1.4 AN INTERCOMPARISON OF THE HYDROLOGICAL CYCLE IN DIFFERENT OPERATIONAL NWP ANALYSIS/FORECAST SYSTEMS. G. H. White, NOAA/National Meteorological Center (NMC), Washington, DC

* 1.5 THE ATMOSPHERIC BRANCH OF THE GLOBAL HYDROLOGIC CYCLE IN THE GLA DATA ASSIMILATION SYSTEM. Man L. C. Wu, and K.-M. Lau, NASA/GSFC, Greenbelt, MD

21 1.6 THE DETECTION OF ANTHROPOGENIC CLIMATE CHANGE. W. T. Pennell, Battelle Pacific Northwest Lab., Richland, WA; T. P. Barnett, Scripps Inst. of Oceanography, La Jolla, CA; K. Hasselmann and H. von Storch, Max-Planck-Institut fur Meteorologie, Hamburg, Germany; W. R. Holland, NCAR, Boulder, CO; T. R. Karl, National Climatic Data Center (NCDC), Asheville, NC; G. R. North, Texas A&M Univ., College Station, TX; M. C. MacCracken and B. D. Santer, Lawrence Livermore National Lab. (LLNL), Livermore, CA; M. E. Moss, U. S. Geological Survey (USGS), Tucson, AZ; G. Pearman, CSIRO, Mordialloc, Victoria, Australia; E. M. Rasmusson, Univ. of Maryland, College Park, MD; W. K. Smith, Univ. of Wyoming, Laramie, WY; P. Switzer, Stanford Univ., Palo Alto, CA; and F. Zwiers, Atmospheric Environment Service (AES), Downsview, Ontario, Canada

29 1.7 LOW FREQUENCY OCEAN VARIABILITY INDUCED BY STOCHASTIC FORCING OF VARIOUS COLORS. T. P. Barnett, Scripps Inst. of Oceanography, La Jolla; M. Chu, California Inst. of Technology, Pasadena, CA; R. Wilde, Harvard Univ., Boston, MA; and U. Mikolajewicz, Max Planck Inst. for Meteorology, Hamburg, Germany

32 1.8 SIMULATION OF THE REGIONAL CLIMATE AND HYDROLOGY OF THE GREAT LAKES BASIN. G. T. Bates, and F. Giorgi, NCAR; and S. W. Hostetler, USGS, Boulder, CO

34 1.9 EFFECT OF SPATIAL RESOLUTION ON THE SIMULATION OF REGIONAL PRECIPITATION IN CHINA IN A GLOBAL CLIMATE MODEL. G. L. Potter, J. S. Boyle, and K. R. Sperber, LLNL, Livermore, CA; and S. Hameed, State Univ. of New York (SUNY), Stony Brook, NY

* 1.10 THE GLOBAL WATER CYCLE DURING THE EARLY PHANEROZOIC (570-245 MILLION YEARS AGO). B. L. Otto-Bleisner, and C. R. Scotese, Univ. of Texas, Arlington, TX
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SESSION 2: SPECIAL SESSION ON ARM RESEARCH</td>
</tr>
<tr>
<td>Cochairs: William Pennell, Pacific Northwest Labs., Richland, WA; and Robert Ellingson, Univ. of Maryland, College, MD</td>
</tr>
<tr>
<td>CART Instrumentation</td>
</tr>
<tr>
<td>38</td>
</tr>
<tr>
<td>46</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>Data Analysis Techniques</td>
</tr>
<tr>
<td>53</td>
</tr>
<tr>
<td>58</td>
</tr>
<tr>
<td>Data Analysis Techniques</td>
</tr>
<tr>
<td>64</td>
</tr>
<tr>
<td>Process Studies and Model Evaluation</td>
</tr>
<tr>
<td>71</td>
</tr>
<tr>
<td>77</td>
</tr>
<tr>
<td>82</td>
</tr>
<tr>
<td>82</td>
</tr>
</tbody>
</table>
SESSION 3: CLIMATE FEEDBACK ASSOCIATED WITH THE HYDROLOGIC CYCLE
Chairperson: Eric J. Barron, Penn State Univ., University Park, PA

3.1 POSSIBLE CLOUD/CLIMATE FEEDBACKS DERIVED FROM THE ISCCP C2 DATA SET. B. C. Weare, Univ. of California, Davis, CA

3.2 IMPACT OF CLOUD MICROPHYSICS ON THE CSU GCM ATMOSPHERIC MOISTURE BUDGET. L. D. Fowler and D. A. Randall, Colorado State Univ., Fort Collins, CO


3.4 SPATIAL AND TEMPORAL CHARACTERIZATION OF DIURNAL CLOUD VARIABILITY. B. E. Carlson, NASA/Goddard Inst. for Space Studies (GISS), New York, NY; and A. B. Wolf, STX Hughes Information Technology Co., New York, NY

3.5 GREENHOUSE SENSITIVITY TO TROPICAL WATER VAPOR DISTRIBUTION AND CIRRUS PROPERTY CHANGES. G. I. Molnar, Atmospheric and Environmental Research, Inc., Cambridge, MA

3.6 PROGNOSTIC CLOUD WATER IN THE LOS ALAMOS GCM. J. E. Kristjansson and C.-Y. J. Kao, Los Alamos National Lab., Los Alamos, NM

3.7 NEAR-GLOBAL CLOUD DROPLET SIZE DATA AND ANALYSIS. Q. Han, Columbia Univ.; and W. B. Rossow and A. A. Lads, NASA/GISS, New York, NY

3.8 CONVECTIVE CLOUD SYSTEMS, SOLAR RADIATION, AND TROPICAL SEA SURFACE TEMPERATURES: ELEMENTS OF A NATURAL THERMOSTAT. D. E. Waliser and N. E. Graham, Scripps Inst. of Oceanography/UCSD, La Jolla, CA

3.9 TWO CLIMATOLOGICAL RECORDS OF UPPER TROPOSPHERIC WATER VAPOR - A COMPARISON BETWEEN TOVS SATELLITE OBSERVATIONS IN THE 6 TO 7 MICRON BAND AND ECMWF UPPER AIR ANALYSES OF TEMPERATURE, MOISTURE, AND VERTICAL MOTION. E. P. Salathe Jr., Yale Univ., New Haven, CT; and D. Chesters, NASA/GSFC, Greenbelt, MD

3.10 THE IMPACT OF DOUBLED CO2 ON THE HYDROLOGIC AND RADIATIVE PROCESSES OF EXTRATROPICAL TRANSIENT EDDIES. L. E. Branscome, Environmental Dynamics Research, Inc., Palm Beach Gardens, FL; and W. J. Gutowski, Jr., Iowa State Univ., Ames, IA

POSTER SESSION P1: ARM SESSION POSTERS

P1.1 THE COMPUTATION OF CLOUD BASE HEIGHT FROM PAIRED WHOLE SKY IMAGING CAMERAS. M. C. Allmen and W. P. Kegelmeyer, Jr., Sandia National Labs, Livermore, CA

P1.2 LONG WAVE RADIATION ALGORITHMS IN GLOBAL CLIMATE MODELING. F. Baer, Univ. of Maryland, College Park, MD
<table>
<thead>
<tr>
<th>Page</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>203</td>
<td>P1.17 SIMULATION OF STRATOCUMULUS CLOUDS WITH EMPHASIS ON PARTICLE PHYSICS AND AEROSOL DISTRIBUTIONS. D. K. Lilly, Y. L. Kogan, Z. N. Kogan, and V. V. Filyushkin, Univ. of Oklahoma, Norman, OK</td>
</tr>
<tr>
<td>208</td>
<td>P1.18 THE UNIFIED SCALING MODEL OF ATMOSPHERIC DYNAMICS AND IMPLICATIONS FOR CLOUD RADIANCES. S. Lovejoy, P. Silas and Y. Tessier, McGill Univ., Montreal, Quebec, Canada; D. Schertzer, Univ. P. et M. Curie, Paris, France; and D. Lavallee, Univ. of California, Santa Barbara, CA</td>
</tr>
<tr>
<td>214</td>
<td>P1.20 THEORY AND RESULTS FOR WATER VAPOR CONTINUUM ABSORPTION. Q. Ma, NASA/GISS, New York, NY; and R. H. Tipping, Univ. of Alabama, Tuscaloosa, AL</td>
</tr>
<tr>
<td>220</td>
<td>P1.21 MULTIFRACTAL MODELS OF CLOUD LIQUID WATER. A. Marshak, SSAI, Lanham; and W. Wiscombe, NASA/GSFC, Greenbelt, MD</td>
</tr>
<tr>
<td>225</td>
<td>P1.22 CLOUD-RADIATIVE FORCING: DEPENDENCE ON SPATIAL AND THREE-DIMENSIONAL STRUCTURE. V. Ramanathan, L. Shi, B. Subasilar, E. Boer, and J. del Corral, Scripps Insts of Oceanography, Univ. of California, La Jolla, CA</td>
</tr>
<tr>
<td>225</td>
<td>P1.23 SEE PAPER # P1.19</td>
</tr>
<tr>
<td>225</td>
<td>P1.24 THE COMPETITION OF SALINITY AND RADIATION IN FORCING THE OCEAN DURING EL NINO. N. Schneider and T. Barnett, Scripps Inst. of Oceanography, La Jolla, CA</td>
</tr>
<tr>
<td>228</td>
<td>P1.25 EFFECT OF VARYING FUNCTIONAL CLOUD COVER ON CLOUD FEEDBACK TEMPERATURE STABILIZATION. Y. Serra, S. F. Iacobellis, and R. C. J. Somerville, Scripps Inst. of Oceanography, Univ. of California, La Jolla; and N. Byrne, Science Applications International Corp. (SAIC), San Diego, CA</td>
</tr>
<tr>
<td>228</td>
<td>P1.26 AUTOMATED WHOLE SKY IMAGING SYSTEMS FOR CLOUD FIELD ASSESSMENT. J. E. Shields, R. W. Johnson, and T. L. Koehler, Univ. of California, San Diego, CA</td>
</tr>
<tr>
<td>232</td>
<td>P1.27 ANALYSIS OF THE COMPUTATIONAL AND OBSERVATIONAL LIMITATIONS OF CLOUD FORCINGS. A. M. Vogelmann and T. P. Ackerman, Penn State Univ., University Park, PA</td>
</tr>
<tr>
<td>235</td>
<td>P1.28 FACTORS INFLUENCING REGIONAL-SCALE CLOUD COVER: INVESTIGATIONS USING SATELLITE-DERIVED CLOUD COVER AND STANDARD METEOROLOGICAL OBSERVATIONS. C. J. Walcek, Atmospheric Science Research Ctr., Albany, NY</td>
</tr>
<tr>
<td>240</td>
<td>P1.30 USING A SECOND-ORDER TURBULENCE RADIATIVE-CONVECTIVE MODEL TO STUDY THE CLOUD/RADIATION INTERACTION WITH THE FIRE DATA. C.-Y. J. Kao, Los Alamos National Lab., Los Alamos, NM</td>
</tr>
<tr>
<td>240</td>
<td>P1.31 ROTATING SHADOWBAND SPECTORADIOMETER. M. A. Beik, J. Michalsky, and L. Harrison, SUNY, Albany, NY</td>
</tr>
</tbody>
</table>
POSTER SESSION P2: GLOBAL CHANGE AND HYDROLOGY POSTERS

244 P2.1 COMPARISON BETWEEN THE LAND SURFACE RESPONSE OF THE EUROPEAN CENTRE MODEL AND THE FIFE-1987 DATA. A. K. Betts and J. H. Bell, Atmospheric Research, Pittsford, VT; and A. C. M. Beljaars, European Centre for Medium Weather Forecasts (ECMWF), Shinfield Park, Reading, UK

245 P2.2 INTER AND INTRA-ANNUAL CLOUD VARIATIONS FROM SATELLITE BASED CLIMATOLOGIES. B. Cairns, NASA/GISS, New York, NY

* P2.3 POTENTIAL IMPACT OF TEMPERATURE AND PRECIPITATION CHANGES ON RIVER FLOW CHARACTERISTICS IN NORTHERN ONTARIO, CANADA. F. Camacho, G. Vascotto, and P. Zielinski, Ontario Hydro Research Division, Toronto, Ontario, Canada

249 P2.4 INTER-SEASONAL VARIABILITY OF COALESCENCE ACTIVITY IN SUMMERTIME CONVECTIVE RAIN CLOUDS AROUND PEORIA, ILLINOIS. R. R. Czys, R. W. Scott, and M. S. Petersen, ISWS, Champaign, IL

P2.5 PAPER WITHDRAWN

256 P2.6 COMMENTS ON POSSIBLE CAUSES OF RECENT GLOBAL WARMING. P. B. Duffy, LLNL, Livermore, CA

263 P2.7 GREENHOUSE GASES AND MOISTURE PARAMETER INTERACTION AT LOCAL SITE. O. Essenwanger, Univ. of Alabama, Huntsville, AL

* P2.8 TROPICAL CLOUDS AND THEIR IMPACT ON RADIATIVE FLUX DEDUCED FROM ERBE AND ISCCP. R. Fu, UCLA, Los Angeles, CA

P2.9 PAPER WITHDRAWN

265 P2.10 AN APPARENT MORATORIUM ON GREENHOUSE WARMING. W. W. Kellogg, NCAR, Boulder, CO

268 P2.11 RESPONSE OF A REGIONAL MODEL IN THE SOUTHEAST TO THE PREDICTED GLOBAL-SCALE CLIMATE CHANGE. S. D. Ko and L. Sun, Univ. of South Carolina, Columbia, SC

272 P2.12 CAN GREENHOUSE WARMING INDUCE ICE SHEET GROWTH??. T. S. Ledley and S. Chu, Rice University, Houston, TX

276 P2.13 GLOBAL CHANGE IMPLICATIONS FOR ANTARCTIC LAKES. B. L. Lindner, Atmospheric and Environmental Research Inc. (AER), Cambridge, MA; C. P. McKay, NASA, Moffett Field, CA; G. D. Clow, USGS, Menlo Park, CA; and R. A. Wharton, Desert Research Inst., Univ. of Nevada System, Reno, NV

280 P2.14 NESTED MODEL SIMULATIONS OF REGIONAL OROGRAPHIC PRECIPITATION. D. A. Matthews, U. S. Bureau of Reclamation, Denver; and G. Bates and F. Giorgi, NCAR, Boulder, CO

P2.15 PAPER WITHDRAWN

284 P2.16 APPLICATION OF SPATIALLY AVERAGING OPTICAL TECHNIQUES TO THE STUDY OF SHORT-TERM FLUX CHANGES ASSOCIATED WITH CLOUDS. W. Porch, F. Barnes, M. Buchwald, J. Stephens, and J. Archuleta, LANL, Los Alamos, NM; and K. Kunkel, ISWS, Champaign, IL

SESSION 6: ANALYSIS OF LONG-TERM DATA SETS

6.1 SATELLITE OBSERVATIONS OF GLOBAL WATER VAPOR VARIABILITY. J. J. Bates, NOAA/ERL Boulder, CO

6.2 OPERATIONAL DATA SETS FOR GCIP RESEARCH. C. F. Ropelewski and J. Janowiak, NOAA/NWS/NMC/Climate Analysis Ctr., Washington, DC; and P. Tian, RDS Corp., Greenbelt, MD


6.7 ESTIMATION OF ARCTIC PRECIPITATION FROM WATER VAPOR FLUX CONVERGENCE. J. E. Walsh and X. Zhou, Univ. of Illinois, Urbana, IL

6.8 RECENT TRENDS IN NORTHERN HEMISPHERE SNOW COVER. D. A. Robinson, Rutgers Univ., New Brunswick, NJ

6.9 TROPICAL TROPOPAUSE TRENDS AS A TEST OF GLOBAL CHANGE. R. A. Reck, Argonne National Lab., Argonne, IL

6.10 INTERANNUAL VARIATIONS IN ANGULAR MOMENTUM FROM A RAWINSONDE-BASED CLIMATE DATA SET. D. A. Salstein, R. X. Black, and R. D. Rosen, AER, Inc., Cambridge, MA

6.11 ANNUAL CYCLE OF THE GLOBAL ATMOSPHERIC WATER BALANCE DERIVED FROM NMC OPERATIONAL PRODUCTS. K. C. Mo, NOAA/NMC, Washington, DC; and E. M. Rasmusson, Univ. of Maryland, College Park, MD
6.12 EL-NINO SIGNAL IN SSM/I DERIVED MONTHLY OCEANIC RAINFALL. A. T. C. Chang, Hydrological Science Branch, NASA/GSFC, Greenbelt; and L. S. Chiu, General Sciences Corp., Laurel, MD

6.13 ANALYSIS OF LOW-FREQUENCY CLIMATE VARIATIONS OVER THE NORTHERN HEMISPHERE USING HISTORICAL ATMOSPHERIC DATA. J. W. Hurrell and H. van Loon, NCAR, Boulder, CO

6.14 THE INFLUENCE OF INTENSE EXTRATROPICAL CYCLONES ON THE WINTERTIME EXTRATROPICAL WATER VAPOR BALANCER. S. Schneider, NOAA/NMC, Washington, DC; and T. K. Schaack and D. R. Johnson, Univ. of Wisconsin, Madison, WI

6.15 REGIONAL CHARACTERISTICS OF THE ATMOSPHERIC HYDROLOGIC CYCLE. T. K. Schaack and D. R. Johnson, Univ. of Wisconsin, Madison, WI; and R. S. Schneider, NOAA/NMC, Washington, DC

6.16 DIURNAL AND INTRASEASONAL VARIABILITY OF SATELLITE-DERIVED PRECIPITATION OVER THE ASIAN MONSOON REGION. A. V. Mehta, Climate and Radiation Branch, NASA/GSFC, Greenbelt, MD


6.18 CLIMATOLOGICAL ANALYSES OF CALIFORNIA WINTERTIME PRECIPITATION. W. Blier, Univ. of California, Los Angeles, CA; and T. P. Mitchell, USRA, NASA/GSFC, Greenbelt, MD

6.19 CLIMATE VARIATIONS IN THE ROCKY MOUNTAIN WEST. T. J. Brown, CIRES/Univ. of Colorado; and H. F. Diaz, NOAA/ERL, Boulder, CO

6.20 ATLANTIC CONVEYOR BELT ALTERATIONS AS A POSSIBLE CAUSE OF MULTI-DECADAL GLOBAL SURFACE TEMPERATURE CHANGE. W. M. Gray, Colorado State Univ. Fort Collins, CO

6.21 HISTORICAL EXTREMES IN MIDWESTERN FLOODING: IMPLICATIONS FOR A CHANGED CLIMATE. S. A. Changnon, K. E. Kunkel, and R. Shealy, ISWS, Champaign, IL


SESSION 7. THE ROLE OF WATER IN EARTH SYSTEM INTERACTION
Chairperson: Eric J. Barron, Penn State Univ., University Park, PA

7.1 MODULATION OF TROPICAL PRECIPITATION AND ENSO VARIABILITY BY THE QBO. W. M. Gray, J. D. Sheaffer, and J. A Knaff, Colorado State Univ., Fort Collins, CO

7.2 ANNUAL AND INTERANNUAL TROPICAL OCEAN- ATMOSPHERE INTERACTION. F.-F. Jin, D. Neelin, Univ. of California, Los Angeles, CA

7.3 TROPICAL OCEAN-ATMOSPHERE INTERACTION IN A HYBRID COUPLED GCM: SEASONAL CYCLE AND INTERANNUAL OSCILLATIONS. H.-H. Syu, J. D. Neelin, and W. Weibel, Univ. of California, Los Angeles, CA; and D. Gutzler, NOAA/ERL, Boulder, CO

7.4 THE TROPICAL ATMOSPHERIC CIRCULATION UNDER CONVECTIVE ADJUSTMENT. J.-Y. Yu and J. D. Neelin, Univ. of California, Los Angeles, CA
7.5 SOME CLIMATOLOGICAL VARIABLES FOR TOGA-COARE DOMAINS: 1985-1990. D. G. Vincent and L. D. Sliwinski, Purdue Univ., West Lafayette, IN

7.6 ENSO-SNOW-MONSOON ASSOCIATIONS AND SEASONAL PREDICTION. S. Yang, AER, Inc., Cambridge, MA

7.7 A TIME SERIES ANALYSIS OF EVAPORATION AND WIND SPEED OVER THE AMAZON BASIN. C. Jones and B. C. Weare, Univ. of California, Davis, CA

7.8 INTERACTIONS BETWEEN LAND-SURFACE PROCESSES AND BOUNDARY-LAYER CLOUD DEVELOPMENT: FORMULATION IN GENERAL CIRCULATION MODELS. M. Ek and L. Mahrt, Oregon State Univ., Corvallis, OR

7.9 INTERANNUAL VARIABILITY IN STRATIFORM CLOUDINESS AND SEA SURFACE TEMPERATURE. J. R. Norris and C. B. Leovy, Univ. of Washington, Seattle, WA

7.10 A SELF-SUSTAINED INTERDECADAL OSCILLATION IN THE COUPLED ICE-THERMOHALINE CIRCULATION SYSTEM. J. Yang and J. D. Neelin, Univ. of California, Los Angeles, CA

7.11 INTRINSIC THERMODYNAMICAL TIME-SCALES OF THE ATMOSPHERE-OCEAN-CRYOSPHERE CLIMATE SYSTEM. P. C. Chu, Naval Postgraduate School, Monterey, CA