Underground and Obscured Object Imaging and Detection

Nancy K. Del Grande
Ivan Cindrich
Peter B. Johnson
Chairs/Editors

15–16 April 1993
Orlando, Florida

Sponsored and Published by
SPIE—The International Society for Optical Engineering

SPIE (The Society of Photo-Optical Instrumentation Engineers) is a nonprofit society dedicated to the advancement of optical and optoelectronic applied science and technology.
Contents

vii Conference Committee

SESSION 1 RADAR SYSTEMS

2 Perspective on underground and obscured-target detection and imaging (Invited Paper) [1942-01]
 D. Giglio, ARPA; J. M. Ralston, M. Braunstein, Institute for Defense Analyses

12 Imaging of buried and foliage-obscured objects with an ultrawide-bandwidth polarimetric SAR [1942-03]
 D. R. Sheen, T. B. Lewis, S. C. Wei, D. W. Kletzli, Jr., Environmental Research Institute of Michigan

21 Development and application of airborne gound penetrating radar for environmental disciplines [1942-35]
 R. M. Cameron, T. Stryker, D. L. Mitchel, W. S. Halliday, Airborne Environmental Surveys

34 Development status of a stepped-frequency ground penetration radar [1942-05]
 W. J. Steinway, C. R. Barrett, Coleman Research Corp.

44 Department of Energy’s ground penetrating radar (GPR): an FM-CW system [1942-30]
 S. Koppenjan, M. Bashforth, Special Technologies Lab.

56 Ground penetrating radar applications for hazardous waste detection [1942-07]
 M. Bashforth, S. Koppenjan, Special Technologies Lab.

SESSION 2 RADAR MEASUREMENTS AND MODELING

66 Results from the Maine 1992 foliage penetration experiment [1942-08]
 M. F. Toups, S. Ayasli, Lincoln Lab./MIT

76 Electromagnetic modeling of foliage-obscured point source response [1942-09]
 C. C. Hsu, J. A. Kong, Massachusetts Institute of Technology; M. F. Toups, J. G. Fleischman,
 S. Ayasli, R. T. Shin, Lincoln Lab./MIT

88 Early results from the Army Research Laboratory ultrawide-bandwidth foliage penetration SAR [1942-34]
 J. W. McCorkle, Army Research Lab.

96 Radio-wave tomography for geological mapping [1942-10]
 N. Pendock, Univ. of the Witwatersrand (South Africa)

105 Image quality improvement for underground radar by block migration method [1942-11]
 G. Ho, A. Kawanaka, Sophia Univ. (Japan); M. Takagi, Univ. of Tokyo (Japan)

117 Contraband detection through clothing by means of millimeter-wave imaging [1942-12]
 G. R. Huguenin, C.-T. Hsieh, J. E. Kapitzky, E. L. Moore, K. D. Stephan, A. S. Vickery,
 Millitech Corp.
SESSION 3 MULTISPECTRAL INFRARED SYSTEMS: APPLICATIONS AND PROCESSING

156 Use of holography for imaging through inhomogeneous media (Invited Paper) [1942-15]
Univ. of Michigan

166 Dual-band infrared capabilities for imaging buried-object sites [1942-17]
R. J. Sherwood, Lawrence Livermore National Lab.

178 Sensor feature fusion for detecting buried objects [1942-18]
R. J. Kane, M. J. Barth, N. K. Del Grande, Lawrence Livermore National Lab.

189 Identifying deep-gravel strata from dispersed thermal radiation [1942-19]
D. E. Scholen, USDA Forest Service

201 Early work in infrared imaging of underground and obscured objects [1942-33]
G. J. Zissis, Environmental Research Institute of Michigan

207 Three-dimensional dynamic thermal imaging of structural flaws by dual-band infrared
computed tomography [1942-21]
D. J. Schneberk, A. B. Shapiro, Lawrence Livermore National Lab.

SESSION 4 X-RAY, GAMMA-RAY, ULTRASONIC, AND NEUTRON SENSING

218 High-resolution tomography of objects with access to a single side (Invited Paper) [1942-22]
R. S. Thoe, Lawrence Livermore National Lab.

236 Three-dimensional nonintrusive imaging of obscured objects by x-ray and gamma-ray computed
tomography [1942-23]

250 Optimum inversion method for coded-aperture emission computed tomography (ECT) using
multiple projections [1942-24]
T. Ito, S. Fujimura, Univ. of Tokyo (Japan)

256 Object detection and imaging with acoustic time reversal mirrors [1942-29]
M. Fink, Univ. Paris VII (France)

268 Three-dimensional ultrasonic imaging [1942-25]
G. H. Thomas, S. Benson, S. Crawford, Lawrence Livermore National Lab.
276 Neutron elastic scatter for detection and identification of obscured objects [1942-26]
H. J. Gomberg, G. Charatis, Penetron, Inc.; D. Wang, M. R. McEllistrem, Univ. of Kentucky

289 Single-sided tomography of extremely large dense objects [1942-32]
R. S. Thoe, Lawrence Livermore National Lab.

301 Addendum

302 Author Index