Table of contents

Preface .. IX

Keynote lectures

Installation, monitoring and design of caissons
H.Brandl .. 3

Design of auger displacement piles from in situ tests
M.Bustamante & L.Gianeselli 21

Updating realism on large-diameter bored piles
V.F.B.de Mello & N.Aoki 35

Design of bored piles, including negative skin friction and horizontal loading
E.Franke .. 43

Interaction problems related to the installation of pile groups
S.Hansbo .. 59

Base capacity of bored piles in sands from in situ tests
V.N.Ghionna, M.Jamiolkowski, R.Lancellotta & S.Pedroni 67

Case studies on cast-in-place bored piles and some considerations for design
T.Matsui .. 77

Settlement prediction for bored pile groups
H.G.Poulos 103

Efficient design of piled rafts
M.F.Randolph & P.Clancy 119

1 **Interaction problems related to pile groups**

Cap-pile interaction of pile groups
Z.C.Chen, H.Xu & J.H.Wang 133

Field tests and analyses on ultimate behavior of lateral loading bored piles
M.Kimura, S.Nakabayashi & K.Ito 143

Group action of laterally loaded piles
M.Kothe & H.L.Jessberger 147
Load distribution in bored pile groups
R.S. Senna Jr, J.C.A. Cintra, M.E.B. Rezende & D. Carvalho

2 Installation problems of bored and auger piles – Monitoring of pile installation
Case studies

Bored versus displacement piles in sand-experimental study
M. Aboutaha, G. De Roeck & W.F. Van Impe

Pile foundations for the ‘Pont de Normandie’ – Special aspects
P. Arz & J. M. Seitz

Influence of the concreting on the bearing capacity
M. Bottiau

Pile walling with the PCS-method
M. Bottiau

Bored cast-in-situ piles in weathered rocks – Evaluation of design parameters
K. R. Datye & J. R. Patil

Instrumentation of pile installation as a management tool
M. England & J. Harding

Effect of dosage and exposure time of slurries on perimeter load transfer in bored piles
R. E. Majano & M. W. O’Neill

Case studies concerning installation of large diameter piles used in Romania
I. Manoliu, R. Stoica & C. Culita

Evaluation of the influence of pile execution parameters on the soil condition around the pile
shaft of a PCS-pile
H. Peiffer, W. F. Van Impe, G. Cortvrindt & M. Bottiau

3 Pile testing, statically and dynamically – Integrity testing

The behaviour of bored piles subjected to load testing as compared to theoretical estimates
G. Baldassarre, C. Cherubini & L. Monterisi

Large diameter bored piles in pyroclastic soils
V. Caputo, A. Mandolini & C. Viggiani

Aspects of the bearing capacity of root piles in some Brazilian soils
D. Carvalho & J. C. A. Cintra

A method of analysis of stress induced displacement in soils with respect to time
M. England

Analysis of loading tests of short large-diameter piles
J. Feda

Nonlinear load-settlement behaviour of bored piles
K. Gwizdala & B. Klosiński
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augered cast-in-place pile testing in Southern California</td>
<td>259</td>
</tr>
<tr>
<td>A.E. Holeyman & Hsueh-Hsin Chu</td>
<td></td>
</tr>
<tr>
<td>First experiences with statnamic load testing of foundation piles in Europe</td>
<td>265</td>
</tr>
<tr>
<td>P. Middendorp</td>
<td></td>
</tr>
<tr>
<td>Dynamic testing of an instrumented drilled shaft</td>
<td>273</td>
</tr>
<tr>
<td>F.C. Townsend, J.F. Theos & D. Bloomquist</td>
<td></td>
</tr>
<tr>
<td>4 Design of bored piles, including negative skin friction and horizontal loading</td>
<td></td>
</tr>
<tr>
<td>Shaft resistance of model pile in granular soil</td>
<td>279</td>
</tr>
<tr>
<td>T.B. Edil & M.A. Abdel Rahman</td>
<td></td>
</tr>
<tr>
<td>Evaluation of bearing capacity and settlement of Wolfsholz piles bored into layered subsoil</td>
<td>285</td>
</tr>
<tr>
<td>K. Gwizdala & A. Tejchman</td>
<td></td>
</tr>
<tr>
<td>Bored piles in clay-shale using expansive concrete</td>
<td>289</td>
</tr>
<tr>
<td>K. M. Hassan, M. W. O'Neill & S. A. Sheikh</td>
<td></td>
</tr>
<tr>
<td>The Romanian Code for large diameter bored piles</td>
<td>295</td>
</tr>
<tr>
<td>I. Manoliu, D. Dimitriu & N. Radulescu</td>
<td></td>
</tr>
<tr>
<td>Punching effects for bored piles</td>
<td>299</td>
</tr>
<tr>
<td>H. Meißner, W.F. Van Impe, Y.L. Shen & C. Vogt</td>
<td></td>
</tr>
<tr>
<td>Analysis and design of piles under lateral loads</td>
<td>309</td>
</tr>
<tr>
<td>J.C. Portugal & P. S. Sêco e Pinto</td>
<td></td>
</tr>
<tr>
<td>Investigation of horizontal ground massive collapse deformations influence on piles</td>
<td>313</td>
</tr>
<tr>
<td>A.J. Shmuelyan</td>
<td></td>
</tr>
<tr>
<td>A new promising concept for bored piles and tension piles</td>
<td>317</td>
</tr>
<tr>
<td>J.J. van Bijsterveld</td>
<td></td>
</tr>
<tr>
<td>Laterally loaded pile analysis using a 3D BEM formulation</td>
<td>323</td>
</tr>
<tr>
<td>P. Varatojo & P. Parreira</td>
<td></td>
</tr>
<tr>
<td>Large diameter bored piles for an office building ‘Amstelhoek’ in Amsterdam</td>
<td>327</td>
</tr>
<tr>
<td>A.J. Verstraeten</td>
<td></td>
</tr>
<tr>
<td>Bearing mechanisms of nodal piles in sand</td>
<td>333</td>
</tr>
<tr>
<td>S. Yabuuchi & H. Hirayama</td>
<td></td>
</tr>
<tr>
<td>An hydraulic gradient study of pile’s base enlargement</td>
<td>337</td>
</tr>
<tr>
<td>A. Zelikson</td>
<td></td>
</tr>
<tr>
<td>5 Settlement behaviour of groups of bored or auger piles – Piled rafts</td>
<td></td>
</tr>
<tr>
<td>Tests of auger piles for design of pile-supported rafts</td>
<td>343</td>
</tr>
<tr>
<td>L.C. Reese, Shin-Tower Wang & R. Reuss</td>
<td></td>
</tr>
<tr>
<td>Development of locked stresses and negative shaft resistance at the piled raft foundation</td>
<td>347</td>
</tr>
<tr>
<td>Messeturm Frankfurt/Main</td>
<td></td>
</tr>
<tr>
<td>H. Sommer</td>
<td></td>
</tr>
</tbody>
</table>
Settlement behavior of a five-story building on a piled raft foundation
K.Yamashita, M.Kakurai, T.Yamada & F.Kuwabara

6 Relevance of in situ testing for the evaluation of bored or auger pile design
Atlas screw piles and tube screw piles in stiff tertiary clays – Assessment of pile performance and pile capacity on basis of instrumented loading tests
F. De Cock, W.F. Van Impe & H.Peiffer

Predicted and measured behavior of non displacement piles in residual soils
L.Décourt

An expert system application for drilled shaft construction
D.J.Fisher, M.W.O’Neill & E.L.Abaya

Predicted and observed behaviour of piles
D.M.Milovic & S.D.Milovic

Evaluation of pile performance based on soil stress measurements – Field test program
H.Peiffer & W.F. Van Impe

Bearing capacity of bored piles in overconsolidated clay
A.X.Tavares

Geotechnical investigation and design of rock sockets in a soft siltstone – A case study
S.Tchepak

7 Design of auger piles with soil displacement
The vibration free realisation of soil retaining walls, using Atlas screw piles
F.De Cock & Ch.Lhoest

Strain measurement in CFA bored piles in soft clay
A.Lyndon, G.Price, L.Stansfield & M.J.Wei

Improvement of augercast pile performance by Expander Body system
K.R.Massarsch & S.Wetterling

The response of sands to the construction of continuous flight auger piles
S.Thorburn, D.A.Greenwood & W.G.K.Fleming

Further experiences with auger piles in Naples area
C.Viggiani

Supplement
Keynote lecture: Quality assessment foundation piles after installation
A.F. van Weele

A small diameter bored pile with a prestressed steel core (active pile)
M.Fuchsberger, K.Schippering & H.Reiffenstuhl

Author index