Informal Proceedings of the Annual Meeting of "GI-Fachgruppe 'Deduktionssysteme'" in Kaiserslautern, 1993

J. Avenhaus, J. Denzinger (eds.)
SEKI Report SR-93-11 (SFB)
Program

Distribution and Combination of Theorem Provers
Jörg Denzinger :

 Distributed knowledge-based theorem proving by team work
Stephan Schulz :

 Analysis and transformation of equational proofs in a distributed environment
B.I. Dahn :

 Integration of logic functions

Termination
Joachim Steinbach :

 On the Automatic Generation of Polynomial Orderings for Proving the Termination of Term Rewriting Systems
Jochen Nessel :

 Generation and Modification of Transformation Orderings
Klaus Becker :

 Proving Termination of Rewriting Modulo a Built-in Algebra
Patricia Johann , Rolf Socher :

 Solving Simplification Ordering Constraints

Functional Programs
Bernhard Gramlich :

 A Unifying Framework for Different Function Definition Formalisms Based on Rewriting Techniques
Jürgen Avenhaus , Carlos Loria-Sáenz :

 On conditional rewrite systems with extra variables and deterministic logic programs
Jochen Burghardt :

 A fine grain sort discipline and its application to program construction

Inductive Theorem Proving I
Ulrich Kühler et al. :

 Positive/Negative-Conditional Equational Specifications
Claus-Peter Wirth et al. :

 Notions of Inductive Validity
Klaus Schmid :

 Groundreducibilitytests -- Even for Nonlinear Term Rewriting Systems
## Inductive Theorem Proving II

- **Thomas Kolbe**, Christoph Walther: 16
  - *Optimizing Proof Search by Machine Learning Techniques*
- **Martin Protzen**: 19
  - *Lazy Generation of Induction Hypotheses*
- **Stefan Gerberding**: 10
  - *A Formal Comparison of Implicit and Explicit Induction*

## Completion / Proof Presentation

- **Birgit Reinert**, Klaus Madlener: 21
  - *On Groebner Bases in Monoid and Group Rings*
- **Andrea Sattler-Klein et al.**: 22
  - *On the Problem of Generating Small Convergent Systems*
- **Xiaorong Huang**: 12
  - *A Reconstructive Approach towards Proof Presentation*

## Automated Theorem Proving I

- **Thomas Rath et al.**: 20
  - *Das Beweissystem KoMeT*
- **Bertram Fronhöfer**: 9
  - *Matrices and Sequent Systems*
- **Jörg Hudelmaier**: 13
  - *Entscheidungsverfahren für modale Logiken*

## Automated Theorem Proving II

- **Christian Prehofer**: 18
  - *Decidable Higher-Order Unification and Second-Order Narrowing*
- **Michael Kohlhase**: 15
  - *Higher-Order Resolution with Combinators*
- **Christoph Weidenbach**: 26
  - *Minimal Resolution*