SEVENTH INTERNATIONAL CONFERENCE ON

SWITCHING ARC PHENOMENA

27TH SEPTEMBER – 1ST OCTOBER 1993
ŁÓDŹ, POLAND
1. ARC AND ITS EXTINCTION.

1.1. ARC IN GASES.

1. Baraboi A., Hnatiuc E., Adam M.
 STUDY ABOUT ONE POSSIBILITY OF MODELIZATION OF THE ELECTRIC ARC 1

2. Chen D.G., Cao Q.R., Chen Y., Li E.F., Qiu Z.S.
 NUMERICAL METHOD TO SIMULATE THE INTERRUPTING PROCESS OF CURRENT LIMITING
 CIRCUIT BREAKER AND ITS APPLICATION 5

3. Chevrier P., Fievet C., Petit P.
 COMPARISONS BETWEEN MEASUREMENTS AND SIMULATIONS FOR MOVING WALL-CONFINED ARCS ... 9

4. Cividjian G.A.
 ARC ENERGY CONSERVATION EQUATION ... 14

5. Gaworczyk J., Kołaciński Z, Campbell L.C.
 DC SPIRAL ARC MODELLING ... 19

 EFFECT OF VARIATION OF MAGNETIC FIELD ON THE CHARACTERISTICS OF ROTATING ARCS ... 23

7. Jerzykiewicz A., Kocięcka K.
 INFLUENCE OF CONTROLLED SPARK GAP ARC RESISTANCE ON THE PULSE SHAPE
 OF H V PULSE GENERATORS .. 28

8. Kamińska A.
 CAPACITANCE INFLUENCE ON CURRENT ZERO REGION PROCESSES IN THERMAL ARC 33

 STOCHASTIC ARC MODELLING ... 39

10. Meštrović K., Harča S.
 COMPUTATION OF THERMODYNAMIC EFFECTS OF SHORT CIRCUIT DUE TO INTERNAL
 ARC IN SWITCHGEAR ... 44

11. Paukert J.
 THE ARC VOLTAGE AND THE RESISTANCE OF LV FAULT ARCS 49

12. Przytocki W.
 PULSE AIDED REIGNITION OF A.C. AND D.C. WELDING ARC 53

13. Tarczyński W., Bolanowski B., Hejman T.
 SIMULATION OF ARC MOTION IN RAIL ELEKTRODE SYSTEM 58

14. Tonkonogov E.
 DETERMINATION OF THE MAYR'S ARC MODEL NORMALIZED PARAMETERS FOR
 THE SLF INTERRUPTION ANALYSIS 64

1.1.2. Arc in the air.

15. Chen Yong, Chen Dequi
 THE INVESTIGATION OF REIGNITION AND BRAKDOWN PHENOMENA OF ARC-MOTION
 IN CURRENT LIMITING CIRCUIT BREAKER 67

16. Gauster E., Rieder W.
 ARC LENGTHENING BETWEEN DIVERGENT RUNNERS: INFLUENCE OF GEOMETRY AND MATERIALS
 OF RUNNERS AND WALLS .. 70

17. Hnatiuc E, Baraboi A., Adam M.
 ABOUT THE VOLTAGE-CURRENT CHARACTERISTIC OF THE NON-LINEAR SERIAL RESISTANCES
 USED FOR INTERRUPTING DIRECT CURRENT ELECTRIC CIRCUITS 74

18. Sloot J., Merck W., Van der Burgt J.Lenstra K.
 MODELLING OF A MCB FOR OPTIMAL SELECTIVITY 77

19. Valatkevičius P., Kūsėlis R., Mečius V., Vileišis A.
 THE SPECIFIC BEHAVIOUR OF AN ELECTRIC-ARC UNDER HIGH FLOW RATES OF AIR 81
20. Valent F., Hütten L., Jurcačko L.
INFLUENCE OF EXTINCTION DEVICE OF THE LOW-VOLTAGE CIRCUIT BREAKER ON LIMITING
OF SHORT CIRCUIT CURRENT. ... 85

1.1.3. Arc in SF6.

21. Birtwhistle D., Nunn G.
A HIGH-CURRENT, PLAIN-BREAK SF6 INTERRUPTER FOR 24 kV SWITCH DISCONNECTORS. 90

22. Cick Z.
TEST RESULTS OF QUENCHING-CHAMBER WITH ROTATING ARC. 95

23. Dubois J., Legros W., Scarpa P., Spronck L.
EXPERIMENTAL COMPARISON OF ROTATING ARC BEHAVIOUR IN AIR AND SF6. 100

24. Guo Wenuan, Guo Bin, Xia Guoyi, Hu Liang
THE PRESSURE CALCULATION DURING ITS STORAGE IN ARC CHAMBER WITH SELF-ENERGY
QUENCHING ARC. ... 103

25. Guo Wenuan, Yang Yongmin, Iia Zhihong,
THE EVALUATION OF ENERGY TRANSFER IN PRESSURE STORAGE IN SF6 SELF-ENERGY
QUENCHING ARC CHAMBER. .. 108

26. Hu Wen-Ping, Wang Qi-Ping
BEHAVIOUR AND EFFECT OF ARC CLOGGING IN A PUFFER BREAKER WITH SF6/N2 MIXTURES. ... 112

EXPERIMENTAL INVESTIGATIONS AND NUMERICAL SIMULATION OF ARCING PHENOMENA
IN AN SF6 AUTOPUFFER CIRCUIT BREAKER. 117

28. Koch D.
SF6 MV CIRCUIT BREAKER: EXISTING SITUATION AND FUTURE TRENDS. 121

29. Muller L.
ABLATION CONTROLLED ARCS IN NOZZLES OF POLYMERIC INSULATING MATERIALS 126

30. Tonkonogov E., Kaplan G., Ugrayumov E.
EFFECT OF DOWNSTREAM PARAMETERS ON SF6 ARC INTERRUPTION. 131

31. Wang Erzhi, Xu Jianyuan, Lin Xin
INTERRUPTING CHARACTERISTICS ANALYSIS OF PUFFER TYPE CIRCUIT BREAKER. 134

32. Wang Zhangqi, Sun Min, Cheng Lichun
COMPUTER SIMULATION AND TESTS ON PRESSURE AND TEMPERATURE OF ARCING IN SF6-SBCB...139

1.2. ARC IN VACUUM.

33. Bartosik M., Jasiulewicz S.
D.C. VACUUM ARC EXTINGUISHMENT BY STRONG PULSED MAGNETIC FIELD. 142

34. Bartosik M., Malinowska E.
METAL OXIDE VARISTORS FOR COOPERATION WITH 3 kV D.C. VACUUM CIRCUIT BREAKER. ... 152

35. Gul A.
SPECIFIC FEATURES OF ELECTRIC ARC AND FACTORS AFFECTING THE ZERO CURRENT AS
A BASIS FOR THE ESTIMATION OF BREAKING CAPACITY OF VACUUM CIRCUIT-BREAKERS. 161

36. Klajn A., Markiewicz H.
SOME PROPERTIES OF DC VACUUM ARC UNDER TRANSVERSE MAGNETIC FIELDS AND
POSSIBILITIES OF THEIR APPLICATION IN PRACTICE. 167

37. Królkowski Cz., Batura R., Babić J.
MINIMUM SPEED OF CONTACT SEPARATION OF A VACUUM INTERRUPTER FOR SWITCHING
OFF A CONDENSER BATTERY WITHOUT ARC REIGNITIONS. 174

38. Wagner H., Fröhlich K., Grill R.
LATE RESTRIKE BEHAVIOUR OF VACUUM INTERRUPTER GAPS AFTER SHORT CIRCUIT
CURRENT INTERRUPTION. .. 180

39. Zalucki Z.
EFFECT OF CONTACT GAP LENGTH ON THE REIGNITION OF HIGH FREQUENCY VACUUM ARCS. ... 185

40. Zalucki Z.
EFFECT OF di/dt NEAR CURRENT ZERO ON REIGNITION OF HIGH FREQUENCY VACUUM ARCS... 191

41. Zou Jiyan, Chen Lichun, Zhu Xinqiang
EROSION RATES AND PATTERNS IN AXIAL MAGNETIC FIELD VACUUM CIRCUIT BREAKERS. 197
1.3. ARC IN FUSES.

1.3.1. Arc in fuses. Basic problems.

42. Ćwikad K., Lipski T.
POST-ARC RESISTANCE IN H.B.C. FUSES. .. 202

43. Ehrhardt A., Nutsch G., Rother W.
DAS VERHALTEN VON ELEKTRISCHEN VON SICHERUNGEN NACH STROMNULL. 206

44. Ilyna N.A., Zhemerov G.G., Shklovsky I.G.
ON SOME ASPECTS CONCERNING THE RELATIONS OF VALUE AND SHAPE OF FUSE ARC
VOLTAGE AND CIRCUIT VOLTAGE. .. 211

45. Jakubiuk K., Lipski T.
IMPROVEMENT OF DAALDER'S ARC MODEL FOR H.B.C. FUSES. 215

46. Reinari C.A., Gomez J.C., Magnago F.
EXPERIMENTAL DETERMINATION OF FUSE FILLER THERMAL CONDUCTIVITY. 220

47. Zhemerov G.G., Ilyina N.A. Shklovsky I.G.
OPTIMIZATION OF TIME-CURRENT CHARACTERISTICS OF FUSE-LINK. 224

1.3.2. Arc in fuses. (vol.2)

48. Kacprzak B.W., Stokes A.D.
FEATURES OF THE IMPROVED H.V. OUTDOOR EXPULSION FUSES 226

49. Lipski T., Ossowicki J.
SOME ASPECTS OF APPLICATION OF STONE-SAND ARC-QUenchING MEDIUM IN H.B.C. FUSES. 231

50. Meng X., Sloot J., Damstra G.
EXPERIMENTAL EVALUATION OF FUSE LIFETIMES FOR THE PULSED CURRENT. 236

51. Ossowicki J., Ćwikad K.
COPPER FUSE-ELEMENTS IN H.B.C. FUSES FOR PROTECTION OF CIRCUITS WITH H.V. MOTORS. 241

52. Wolny A., Stokes A.D.
VARISTOR ASSISTED FUSE CURRENT BREAKING. .. 245

2. PHENOMENA ON CONTACTS; MICROARC.

53. Dubravec B.
DEGRADATION AND EROSION OF CONTACTS AgCDO-15 AND AgSn02-12 HEATED BY SWITCHING
ARCS AT ARCING TIMES 2,5MS AND 1MS. .. 250

54. Glaba M., Walczuk E.
DYNAMICS OF CONTACT EROSION IN ELECTROMAGNETIC CONTACTORS. 256

55. Lasota R.
REDUCTION OF SWITCHING ARC ENERGY IN D.C. HYBRID SWITCHES WITH GTO THYRISTORS. 264

56. Trusca V., Pavelescu D., Droae A., Dumitrescu G.
STUDY ON VACUUM COMMUTATION ELECTRICAL CONTACTS. 269

57. Walczuk E., Błaszczyszyn H., Boczkowski D.
COMPUTER AIDED INVESTIGATIONS OF ARC EROSION CHARACTERISTICS
AND CONTACT RESISTANCE. .. 274

3. RECOVERY VOLTAGES.

58. Lesiński S.
STATISTICAL MODEL OF THE LOW-VOLTAGE SWITCH INFLUENCE ON A TRANSIENT RECOVERY
VOLTAGE. .. 281

59. Popescu C., Popescu M.
CALCULATION OF 4 PARAMETERS TRANSIENT RECOVERY VOLTAGE IN SYNTHETIC TEST
CIRCUITS. .. 286
4. PLASMA APPLICATION FOR ENVIRONMENT PROTECTION.

60. Coufal O., Fidler A., Gregor J., Šen J.
 ARC HEATER EQUIPMENT FOR TOXIC SUBSTANCES DESTRUCTION. 291

61. Królikowski Cz., Namysłak R., Niewiedział R.
 THE DIRECT CURRENT ARC PLASMATRONS FOR WASTE DISPOSAL. 296

5. PLASMA AND SWITCHING PHENOMENA DIAGNOSTIC.

 SYSTEM FOR MATERIAL TESTING OF HERMETIC SWITCHES OF A SMALL POWER. 301

63. Besborodko P., Abbaoui M., Robin-Dugreneau J.
 NEW EXPERIMENTAL SPECTROSCOPIC SET UP USED FOR SQUEEZED ELECTRICAL ARC STUDIES. 305

64. Bušov B., Jadrný P., Aubrecht V., Gross B., Maloch J.
 SWITCHING ARC DIAGNOSTIC AND CAD. 309

65. Cormier J., Richard F., Chapelle J.
 HIGH SPEED PHOTOGRAPHY APPARATUS APPLIED TO GLIDING ARC STUDIES. 313

66. Fievet C., Maftoul J.
 OVERALL RADIATIVE ENERGY BALANCE IN MOTIONLESS WALL-CONFINED ARCS. 316

 ANALYSIS OF THE MOVEMENT OF AN ELECTRIC ARC BY MEANS OF A MATRIX OF MICROCOILS... 321

68. Lindmayer M., Rusteberg C., Klajn A.
 MEASUREMENT OF THE PLASMA PARAMETERS OF HIGH CURRENT ARCS IN VACUUM. 326

69. Schumacher M., Pietsch G., Bauschke S.
 TIME RESOLVED ANALYSIS OF ARC RADIATION USING THERMOPILES. 332

6. MISCELLANEA.

70. Burani G.F., Kameyama F.H., Suetu H.E.
 EXPERIMENTAL INVESTIGATION ON SUSTAINED ARCING IN LOW VOLTAGE POWER DISTRIBUTION SYSTEMS. 336

71. Hnatiuc E.
 COMMUTATION WITHOUT AN ELECTRICAL ARC FOR DC CIRCUITS. 339

72. Partyka R.
 RESULTS OF INVESTIGATION OF THREE PHASE HIGH VOLTAGE DISTURBANCE ARC AND THEIR ANALYSIS. 341

73. Tusaliu P., Ciontu M.
 OVER RECOVERY VOLTAGE UPON KILOMETRIC DEFECT DISCONNECTING. 344

74. Wang E.Z., Liu X.M., Tong L.Z.
 COMPARATIVE STUDY OF THE CHARGE SIMULATION METHOD AND THE FINITE ELEMENT METHOD FOR COMPUTING ELECTRIC FIELD. 349

ADDITIONAL CONTRIBUTION

75. Vávra Z., Toufar J.
 PRESSURE DEPENDENCES IN THE QUENCHING CHAMBER OF A SMALL CIRCUIT-BREAKER WITH SF$_6$. 354