WORKSHOP ON X-RAY INSTRUMENTATION FOR
SYNCHROTRON RADIATION RESEARCH
Stanford Linear Accelerator Center
April 3-5, 1978
Edited by H. Winick and G. Brown
SSRL Report No. 78/04
May 1978

Sponsored by Brookhaven National Laboratory, Cornell University, and Stanford Synchrotron Radiation Laboratory, and supported by the Department of Energy and the National Science Foundation.
TABLE OF CONTENTS

I. Introduction.. I- 1

II. Invited Papers

Bragg Reflection Optics**
M. Hart

Curved Crystal Monochromators
D. Berreman... II- 1

X-ray Mirrors*
V. Rehn

Phase Space Optics for Synchrotron Radiation
P. Pianetta.. II- 2

Design Considerations for Beam Lines for Microscopy and Lithography**
E. Spiller

Position Sensitive Detectors for Synchrotron Radiation Research**
H. Schnopper

Semiconductor Detectors for Fluorescent EXAFS
F. Goulding... II- 22

III. Working Group on Crystals and Crystal Monochromators

Chairman, R. Deslattes

Summary
R. Deslattes.. III- 1

Reports

Polarizing X-ray Optics
Michael Hart.. III- 6

Long Grating Spacing Crystals
A. J. Burek... III- 8

* Manuscript included under proper heading

** Manuscript not included
III. Continued

X-ray Optical Consideration on Crystal Monochromators for Synchrotron Radiation
T. Matsushita.. III- 17

Synthetic Structures Layered on the Atomic Scale
T.W. Barbee, Jr. and D.C. Keith................................. III- 26

Mosaic Crystals for Obtaining Larger Energy Bands and High Intensities from Synchrotron Radiation Sources
Cullie J. Sparks, Jr.. III- 35

Perfect Crystal Optics for Synchrotron Radiation
U. Bonse... III- 47

IV. Working Group on Lithography
Chairman, Piero Pianetta

Summary
Piero Pianetta.. IV- 1

V. Working Group on Thin Windows
Chairman, E. Hoyt

Summary
E. Hoyt... V- 1

Report
Thin Window for Soft X-rays
Janos Kirz... V- 9

VI. Working Group on Grating and Grating Monochromators - Chairman, Elisabeth Kallne

Summary
E. Kallne... VI- 1

Reports
Grazing Incidence Grating Optics
R.J. Speer... VI- 7

Progress in X-ray Reflection Gratings (Grazing Incidence Mountings)
R.J. Speer... VI- 8
VI. Continued

A Grazing Incidence Monochromator
G.P. Williams.. VI- 21

Possibilities for Extremely Grazing Applications
of Type IV Gratings
Malcolm Howells... VI- 25

National Physical Laboratory X-ray Gratings
and Spectrometers
A. Franks, P.R. Stuart and M. Stedman................. VI- 30

A Zone Plate Monochromator for Synchrotron
Radiation
Eberhard Spiller... VI- 44

Multilayer Coatings for Soft X-rays
Status Report (March 1978) of Work
R.P. Haelbich, C. Kunz and E. Spiller.................. VI- 50

Polarization and Synchrotron X-ray Grating
Monochromators
M.W. Williams and E.T. Arakawa.......................... VI- 51

Improved Performance (Transmission) Gratings
Paul L. Csonka.. VI- 59

Modelling of Transmission Gratings Compatible
with Synchrotron Radiation Sources
Roman Tatchyn... VI- 67

Preliminary Results-HEAO-B Objective Grating
Spectrometer Calibration
F.D. Seward - February 15, 1978......................... VI- 78

More Preliminary Results-HEAO-B Objective Grating
Spectrometer Calibration-Measurements of
Beryllium Continuum
F.D. Seward - March 9, 1978.............................. VI- 98

VII. Working Group on Mirrors
Chairman, Vic Rehn

Summary
Vic Rehn... VII- 1
X-ray Mirrors
Vic Rehn... VII- 13

A Mirror-Monochromator Focussing Camera for X-ray Diffraction in the Wavelength Range 0.7-2.2 Å
G. Rosenbaum and A. Harmsen.........................! VII- 36

Facility to Measure the Angular Dependence of the Reflectivity of Materials
Eberhard Spiller.. VII- 38

PNL - Diamond Turning Capability
D.M. Miller & N. Laegreid............................. VII- 39

Grazing Incidence Reflection Measurements on Beryllium
James J. LePage.. VII- 43

In Situ Monitoring of Mirror Surfaces in Synchrotron Radiation Applications
D.E. Aspnes and V. Rehn............................... VII- 67

Beam Line Chemistry
David A. Shirley.. VII- 80

The Measurement and Assessment of Optical Figure and Surface Topography
A. Franks... VII-101

Effects of Synchrotron Generated X-radiation on Uncoated and Gold-coated Elastically Bent Silica Mirrors
A. Franks, K. Lindsey, P.R. Stuart.................... VII-117

X-ray Focusing by Bent Glass Optics
A. Franks... VII-128

A Parabolic Collimator of Adjustable Incidence Angle and Constant Focal Length
M. Stedman... VII-142
VIII. Working Group on Detectors
Chairman, Paul Phizackerley

Summary
Paul Phizackerley

Reports

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semiconductor Detector Systems for Synchrotron Radiation Spectroscopy</td>
<td>VIII-14</td>
</tr>
<tr>
<td>F.S. Goulding, A.C. Thompson, J.M. Jaklevic</td>
<td></td>
</tr>
<tr>
<td>TV Area Detector for Use with Synchrotron Radiation Sources</td>
<td>VIII-15</td>
</tr>
<tr>
<td>U.W. Arndt</td>
<td></td>
</tr>
<tr>
<td>A Slow Scan Image Intensifier-TV Detector for X-ray Diffraction</td>
<td>VIII-16</td>
</tr>
<tr>
<td>Studies</td>
<td></td>
</tr>
<tr>
<td>G.T. Reynolds, J.R. Milch, S.M. Gruner and R.D. Piccard</td>
<td></td>
</tr>
<tr>
<td>A Fast TV-Type X-ray Detector for Biological Diffraction Studies</td>
<td>VIII-28</td>
</tr>
<tr>
<td>Using Synchrotron Radiation</td>
<td></td>
</tr>
<tr>
<td>James R. Milch</td>
<td></td>
</tr>
<tr>
<td>An Electro-Optical Imaging System for X-ray Detection</td>
<td>VIII-34</td>
</tr>
<tr>
<td>Kenneth Kalata</td>
<td></td>
</tr>
<tr>
<td>Dynamic X-ray Diffraction Investigation of Materials</td>
<td>VIII-37</td>
</tr>
<tr>
<td>Robert E. Green, Jr.</td>
<td></td>
</tr>
<tr>
<td>Electro-Optical Detectors and Flash X-ray Generators for Dynamic</td>
<td>VIII-38</td>
</tr>
<tr>
<td>X-ray Diffraction Investigation of Materials</td>
<td></td>
</tr>
<tr>
<td>Robert E. Green, Jr.</td>
<td></td>
</tr>
<tr>
<td>Applications of Delay Line Readout to One Dimensional and Area</td>
<td>VIII-44</td>
</tr>
<tr>
<td>Detectors for X-ray Crystallography</td>
<td></td>
</tr>
<tr>
<td>V. Perez-Mendez</td>
<td></td>
</tr>
<tr>
<td>Electromagnetic Delay Lines in Spark, Proportional and Drift</td>
<td>VIII-47</td>
</tr>
<tr>
<td>Chambers Applications</td>
<td></td>
</tr>
<tr>
<td>P. Lecomte, V. Perez-Mendez, and G. Stoker</td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Page No.</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>One Dimensional Curved Wire Chamber for Powder X-ray Crystallography</td>
<td>VIII- 54</td>
</tr>
<tr>
<td>D. Ortendahl, V. Perez-Mendez, J. Stoker</td>
<td></td>
</tr>
<tr>
<td>A 700 MHz Time to Digital Converter for Fast Position Encoding of Delay Line PSDs</td>
<td>VIII- 69</td>
</tr>
<tr>
<td>G. Rosenbaum and W. Gebhardt</td>
<td></td>
</tr>
<tr>
<td>Detector for University of Virginia Proposed X-ray Diffractometer</td>
<td>VIII- 70</td>
</tr>
<tr>
<td>S. Sobottka and G. Cornick and R. Kretsinger</td>
<td></td>
</tr>
<tr>
<td>Summary of RC-Line Position Encoding</td>
<td>VIII- 73</td>
</tr>
<tr>
<td>Manfred Kopp</td>
<td></td>
</tr>
<tr>
<td>Gas-Filled X-ray Area Detectors - Abstract</td>
<td>VIII- 76</td>
</tr>
<tr>
<td>A.H. Walenta</td>
<td></td>
</tr>
<tr>
<td>Position-Sensitive Proportional Counter and Its Application</td>
<td>VIII- 77</td>
</tr>
<tr>
<td>T. Izumi</td>
<td></td>
</tr>
<tr>
<td>Spherical Drift Chamber Development for X-ray Crystallography</td>
<td>VIII- 84</td>
</tr>
<tr>
<td>Craig Bolon, Martin Deutsch, and Richard Lanza</td>
<td></td>
</tr>
<tr>
<td>A Novel Position Sensitive Detector for Use with Storage Rings Operating in the Single Bunch Mode</td>
<td>VIII- 93</td>
</tr>
<tr>
<td>J. Hendrix and H. Furst</td>
<td></td>
</tr>
<tr>
<td>The Application of a Drift Multiwire Proportional Counter to the Imaging of Low Energy X-rays</td>
<td>VIII-102</td>
</tr>
<tr>
<td>W.H.-M. Ku, P.B. Reid, K.S. Long and R. Novick</td>
<td></td>
</tr>
<tr>
<td>Some Experience with and Future Requirements for Semiconductor Detectors Used for Synchrotron Radiation X-ray Energy-Dispersive Diffractometry</td>
<td>VIII-124</td>
</tr>
<tr>
<td>B. Buras</td>
<td></td>
</tr>
<tr>
<td>Subnanosecond X-ray Detectors</td>
<td>VIII-132</td>
</tr>
<tr>
<td>D.J. Nagel and R.D. Bleach</td>
<td></td>
</tr>
<tr>
<td>X-ray Film - Abstract</td>
<td>VIII-135</td>
</tr>
<tr>
<td>U.W. Arndt</td>
<td></td>
</tr>
<tr>
<td>Microchannel Plate Photon Detectors</td>
<td>VIII-136</td>
</tr>
<tr>
<td>Branko Leskovar</td>
<td></td>
</tr>
</tbody>
</table>
VIII. Continued

Detector Requirements for X-ray Topography
B.K. Tanner... VIII-178

A Detector System for Absorption Studies Using
Soft X-ray Synchrotron Radiation
J. Stöhr and D. Denley............................ VIII-181

Requirements for EXAFS
S. Cramer, K. Hodgson, J. Kirby, M. Klein,
A. Robertson, A. Thompson........................... VIII-189

IX. Summaries of X-ray Detector Properties........ IX- 1

X. Photos of Instrumentation Workshop............. X- 1

XI. List of Participants................................ XI- 1