TABLE OF CONTENTS

Session

1 REPAIR AND REFURBISHMENT - I

- **Wisconsin Electric Power Company Oak Creek Power Plant**
 Unit 8 L-1 Turbine Bucket Refurbishment
 S. W. Greco, T. W. Burtard, D. B. Robinson (Wisconsin Electric)
 Analysis and Replacement of 15th Stage Blading of Martin’s Creek Unit
 B. Piatt (Pennsylvania Power and Light Company)
 C. Hong (Stress Technology Inc.)
 Assessment of Reliability and Life Improvement Utilizing Alternate Materials for Gas Turbine Blades
 J. B. Lovelace (Arizona Public Service Company)
 J. C. Hendelman (Turbine Blading (USA) Inc.)

- **Diagnosis and Correction of Recurring Failures in L-2 Turbine Stage**
 S. H. Hesler (Stress Technology Inc.), J. E. Marshall (Electricity Commission of New South Wales)

2 LIFE ASSESSMENT

- **A Guide to Mechanical Condition Assessment in the Turbine Steam Path**
 W. P. Sanders (Turbo-Technic Services Inc.)
 W. R. Southall (Pacific Gas and Electric Company)

- **Experience with Residual Stress Measurements at Last Stage LP - Turbine Blades**
 E. Stuecker (Siemens AG-KWU), G. Gartner, H. J. Hammel (Siemens Power Corporation)

- **Operating Experience with Nozzles and Blades in MS-5002 Gas Turbines in a Desert Environment**
 R. S. Norek (Saudi Arabian Oil Company)
3 TURBINE PERFORMANCE

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application of Three-Dimensional Design Methodology to an Advanced Industrial Gas Turbine</td>
<td>S. Aoki, I. Fukue, T. Sato, M. Mori (Mitsubishi)</td>
<td>3-1</td>
</tr>
<tr>
<td>Aerodynamic Analysis of Advanced Blading for Steam Turbines</td>
<td>O. Novak, O. Schöfer, B. Schönung (ABB Turbo Systems Ltd.) U. Steiger (ABB Power Generation Ltd.)</td>
<td>3-17</td>
</tr>
<tr>
<td>An Analysis Method to Optimize Transonic Turbine Blade Design</td>
<td>D. K. Whirlow (Westinghouse Science & Technology Center) S. Chen (Westinghouse Power Generation Technology Division)</td>
<td>3-39</td>
</tr>
<tr>
<td>Redesigned Turbine Blading and Steam Path Optimization for Higher Efficiency</td>
<td>J. V. Perera (Elliott Turbomachinery Company)</td>
<td>3-67</td>
</tr>
<tr>
<td>The Effect of Blade Lean on an Axial Turbine Stator Flow Having Various Hub Tip Ratios</td>
<td>E. M. Bennett (Concepts, ETI Inc.)</td>
<td>3-89</td>
</tr>
</tbody>
</table>

4 VIBRATION ANALYSIS

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLADE™ Analysis Capabilities and Experience</td>
<td>R. Plummer, M. Redding (Stress Technology Inc.) T. McCloskey, J. M. Allen (EPRI)</td>
<td>4-1</td>
</tr>
<tr>
<td>The Importance of Blade-Disk Modeling for Defining Resonant Operating Conditions</td>
<td>T. Lam, R. Dewey, A. Sarlashkar (Stress Technology Inc.)</td>
<td>4-21</td>
</tr>
<tr>
<td>Characteristics of Nonsynchronous Vibration of Turbine Blades</td>
<td>J. M. Allen (EPRI)</td>
<td>4-43</td>
</tr>
<tr>
<td>Comparison of Unstalled Flutter Predictions and Field Measurements for Steam Turbine Blades</td>
<td>D. H. Evans (Westinghouse Electric Corporation)</td>
<td>4-83</td>
</tr>
<tr>
<td>TUBSIM - A Computer Program Package for Forced Vibrations and Life Estimation of Turbine Blades for Stationary and Transient Operations</td>
<td>M. Hohlrieder, H. Irretier, A. Kayser (Institute of Mechanics, University of Kassel)</td>
<td>4-101</td>
</tr>
</tbody>
</table>
5 MONITORING AND DIAGNOSTICS

Blade Vibration Monitoring Technology
M. Mase (Mitsubishi)
P. F. Rozelle, T. W. Zagar (Westinghouse Electric Corporation) 5-1

STARS®: Turbine Blade Monitoring Using Acoustic Pressure Sensors
R. L. Matusheski, R. Colsher (EPRI M&D Center)
A. L. Moffa (Liberty Technologies) 5-21

Monitoring Compressor Blade Tip Clearance in Combustion Turbines
H. R. Simmons, A. J. Smalley, C. E. Edlund (Southwest Research Institute)
R. W. Frischmuth (EPRI) 5-49

Interpretation and Application of Cooled Turbine Blade Optical Pyrometer Data
D. Little (Liburdi Engineering Limited)
J. Allen (EPRI) 5-69

6 MATERIALS AND COATINGS

The Effect of Austenitizing and Tempering Temperature on the Mechanical Properties of 403 + Nb Stainless Steel
M. P. Manning (General Electric Company) 6-1

A Review of High Temperature Coatings for Combustion Turbine Blades
H. L. Bernstein (Southwest Research Institute)
J. M. Allen (EPRI) 6-17

Blading Material for Large Landbased Gas Turbines
P. Holmes, A. Pfeffer, K. Schneider (ABB Power Generation Ltd.) 6-49

7 DESIGN AND IMPROVEMENTS

Design and Verification of Interlocked Blading for Steam Turbine Exhaust Ends
Y. Kadoya (Takasago Machinery Works)
M. Honjo (Takasago R&D Center)
Y. Okada (Nagasaki R&D Center)
A. J. Partington (Westinghouse Electric Corporation) 7-1

Development of Longer Last Row Blades for GEC Alsthom Steam Turbines
G. Franconville, J. A. Hesketh (GEC Alsthom) 7-13

Pinned Blades for Application to Partial Admission Control Stages
D. J. Buquoi, A. J. Partington (Westinghouse Corporation) 7-35
The Evolution of a First Stage Rotating Combustion Turbine Blade with Single Pass Cooling
F. A. Pisz, E. North, G. L. Whidden, P. M. Furlong (Westinghouse Electric Corporation) 7-45

8 REPAIR AND REFURBISHMENT II

Refurbishment and Upgrading of Steam Turbine Rotor Blade Attachments by Welding
T. L. Driver, R. E. Clark (Westinghouse Electric Corporation) 8-1

L-1 Blade Failure Analysis and Correction
S. R. Palakodeti, J. E. Schaefer, D. B. Smith (Detroit Edison) 8-23

Engineering Considerations for Gas Turbine and Steam Turbine Blade Repairs
M. Trujillo (Chromalloy Heavy Industrial Turbines) 8-37

Design Modifications and Repairs to Existing Steam Path Components to Improve Their Existing In-Service Performance
S. Jordan (Turbine Blading U.K. Ltd.)
M. J. Fraser (Turbine Blading (USA) Inc.) 8-53

WORKSHOP SESSIONS

Repair and Refurbishment 9-1
Aerodynamics and Performance 9-11
Monitoring and Diagnostics 9-15
Materials, Coatings, and Life Enhancement 9-25
Failure Diagnosis, NDE, and Life Prediction 9-33

APPENDICES

A Attendance List A-1
B Agenda B-1
C Exhibitor List C-1