NUMERICAL METHODS IN FLUID DYNAMICS I

edited by;
Michiru YASUHARA
Hisaaki DAIGUJI
Koichi OSHIMA

JAPAN SOCIETY OF COMPUTATIONAL FLUID DYNAMICS

The Institute of Space and Astronautical Science
Yoshinodai 3, Sagamihara 229, JAPAN
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE ...</td>
</tr>
<tr>
<td>CONTENTS ...</td>
</tr>
<tr>
<td>COLOR FIGURES ...</td>
</tr>
</tbody>
</table>
| G1 MORICE, Ph.:
 Some recent progress in CFD at ONERA; | 1 |
| G2 MIYAKE, Yutaka KAJISHIMA, Takeo:
 A discussion on turbulent flows in pipes and channels on the basis of large scale LES; | 7 |
| G3 OERTEL Jr., H.:
 Validation of Navier-Stokes methods for aerospace applications; | 16 |
| G4 TAGO, Yoshio:
 Numerical simulations with Fujitsu supercomputer FACOM VP; | 23 |
| A01 SATOFUKA, Nobuyuki:
 Numerical simulation of the Euler and Navier-Stokes equations on parallel computers; .. | 28 |
| A02 CAPDEVILA, H. PAHLKE, K.:
 Concurrent processing of CFD codes used in aerodynamic design; | 35 |
| A03 RUSANOV, V. V. BELOVA, O. N. KARLIN, V. A.:
 About solving the PNS equations by marching method; | 43 |
| A05 PLATFOOT, R. A. FLETCHER, C. A. J.:
 Computation of internal flows demonstrating severe curvature; | 46 |
| A06 DWYER, Harry A. YAM, C.:
 Multi-dimensional low Mach number numerical simulations; | 52 |
| A07 WU, Jiang Hang:
 The new numerical methods for solving the convection-dominated problems in fluid dynamics; | 59 |
| A08 WU, Huamo:
 A new class of accurate high resolution schemes - analysis and applications; | 64 |
| A10 LIU, C. MCCORMICK, S.:
 Multigrid, the fast adaptive composite (FAC) grid method for solving flow problems; | 74 |
| A13 FU, Dexun MA, Yanwen:
 Efficiency and accuracy of numerical methods for solving the aerodynamic equations; | 78 |
| A15 BRISTEAU, M. O. PIRONNEAU, O. VALLET, M. G.:
 Numerical analysis for compressible viscous isentropic stationary flows; | 86 |
| A16 GRASSO, F.:
 Numerical solution of viscous high speed flows; | 93 |
| A17 MATSUNO, Kenichi:
 A high order time-accurate scheme and its applications to airfoil flows; | 106 |
| A18 TAKI, Shiro:
 Numerical simulation of standing detonation induced by oblique shock wave; | 113 |
| A19 KAWAI, Masafumi ANDO, Yasunori IKEDA, Hideo FUJIMORI, Toshiro OHMORI, Yasunori FUKUDA, Masa Hiro:
 Numerical solution of chemically reacting viscous flows; | 119 |
A20 MATSUMURA,Hiroshi KOBAYAKAWA,Makoto:
Application of a digital control theory for generating adaptive grids; 124
A21 MALLET,M. PERIAUX,J. STOUFFLET,B.:
Finite element methods for highly compressible Euler/Navier-Stokes flows and related applications in aerospace engineering; 130
A23 SIDOROV,A.F.:
Semi-analytical methods for solving nonlinear three-dimensional gas dynamic problems based on special constructions of series; 137
A24 D'HUMIÈRES,D. LALLEMAND,P. RIVET,J.P.:
Lattice gases for simulations of fluid flows; ... 142
A26 ZHU,Zi-Qiang BAI,Xue-Song:
The transonic nonisentropic potential calculation; ... 147
A29 FORESTIER,A.J. BUNG,H.:
Boundary conditions in a TVD scheme for Euler equation in a finite element formulation; ... 158
A30 KOSHIIZUKA,Seiichi OKA,Yoshiaki KONDO,Shunsuke:
A staggered differencing technique on boundary-fitted curvilinear grid for incompressible Navier-Stokes equation written with physical components; 163
A31 BELOTSEKOVSKY,Oleg M.:
Direct numerical modeling of free induced shear turbulence; 170
A33 KOVENYA,V.M.:
Algorithms for the Navier-Stokes equations of compressible gas; 175
A34 TAMURA,Yoshiaki FUJII,Kozo:
Use of graphic workstation for computational fluid dynamics; 180
B01 WOLFSHTEIN,Micha:
Trends and prospects in computations of turbulent flows; 187
B03 WATANABE,Takashi NAKAMURA,Ikuo MIYAMA,Masafumi:
A finite element analysis of a two-dimensional asymmetric relaxing channel flow by the k-ε model; ... 193
B04 SU,Ming-De:
Large eddy simulation of turbulent flow and its prospect; 200
B06 HORIUTI,Kiyoshi:
Anisotropic representation of the Reynolds stress in large eddy simulation of turbulent channel flow; ... 206
B07 HIRAI,Shuichiro TAKAGI,Toshimi TAKADA,Masahiko:
Calculation of turbulent swirling flow in a long pipe with Reynolds stress closure; ... 213
B09 ROZHDESTVENSKY,B.L.:
Numerical simulation of turbulent flows in channels and pipes: methods, results and prospects; ... 218
B10 GUSHCHIN,V.A. KONSHIN,V.N.:
Numerical simulation of the unsteady separated fluid flows in a wide range of Reynolds numbers; ... 222
B11 KURKAL,Krishna MUNUKUTLA,Sastry:
Computational study of a symmetric turbulent wake; ... 227
B12 MYONG, Hyon-Kook KASAGI, Nobuhide:
Toward an anisotropic k-ε turbulence model taking into account the wall-limiting behavior of turbulence; .. 232

B13 YOSHIZAWA, Yoshimasa HOZUMI, H.:
Numerical calculation of viscous flow in and around a liquid droplet; 238

B14 SONG, Charles C.S.:
Turbulent flows in two and three-dimensional diffusers: Computation and comparison with experimental data; .. 244

B15 MOCHIMARU, Yoshihiro:
Numerical simulation of heat and fluid flow past a sphere, using a spectral method; 250

B16 INOUE, Osamu:
Coherent structures of highly excited mixing layers; ... 258

B17 KONDOH, Tsuguo NAGANO, Yasutaka:
Numerical investigation of three-dimensional separating and reattaching flow downstream of a backward-facing step; .. 263

B18 ARMFIELD, S.W.:
Direct simulation of unsteady natural convection in a cavity; 271

B19 OSHIMA, Koichi OSHIMA, Yuko IZUTSU, Naoki:
Topological study of three-dimensional vortex interactions; 277

B20 TOLSTYKH, A.I.:
The third order compact approximation for incompressible flows; 283

B22 ABOU BAKER, A. ROESNER, K.G.:
Numerical solution of the flow around a moving cylinder; 289

B23 KU, Hwar-Ching TAYLOR, Thomas D.:
Solutions of two- and three-dimensional incompressible flow in complex geometries by the pseudospectral matrix element methods; 294

B24 HATANAKA, K. HAYASHI, M. KAWAHARA, M.:
Numerical investigations of solving unsteady, incompressible, viscous fluid flow by finite element method; .. 302

B25 BAKER, A.J. IANNELLI, G.S.:
On a robust implicit finite element CFD algorithm for aerodynamics; 309

B26 HABASHI, Wagdi G. BARUZZI, Guido S. PEETERS, Martin F.:
A Newton-Galerkin algorithm for computational fluid dynamics; 316

B27 YOSHIHARA, Hideo:
Problem areas in applied computational fluid dynamics; 324

B28 DADONE, Andrea FORTUNATO, Bernardo:
Computation of steady three dimensional transonic internal flows; 330

B29 YAMAMOTO, Makoto:
Calculation of tip leakage flow with three dimensional Euler code; 337

B30 KUMAR, Anand:
Flow calculation over delta-wing using the thin-layer Navier-Stokes equations; 342

B31 PIVA, R.:
The boundary integral equation method for viscous and inviscid flows; 348
B32 OHYAMA, Takumi:
Boundary element analysis for run-up of nonlinear water wave; 356

B33 KAKUDA, Kazuhiko; TOSAKA, Nobuyoshi:
Numerical analysis of viscous fluid flow problems by the generalized boundary element method; 364

B34 NISHIMURA, Hitoshi; TAKEWAKA, Satoshi:
Two-dimensional water wave analysis using Lagrangian coordinate; 370

C01 HICKMAN, Roy S.; LOCASCIO, James Gaspare:
Simulation of water waves generated by ground motion: island coastal interaction; 375

C02 CHEN, Han-Lin; OSHIMA, Koichi; HINADA, Motonori:
Numerical analysis of thermocapillary and evaporating flow at low Bond number; 380

C03 IMAMURA, Fumihiko; SHUTO, Nobuo:
Tsunami propagation simulation by use of numerical dispersion; 390

C04 HOLZ, Peter; LEHFELDT, Rainer:
Numerical simulation techniques for currents and sediment transport in shallow waters; 396

C05 NETA, B.; WILLIAMS, R.T.:
Analysis of finite element methods for the solutions of the vorticity-divergence form of the shallow water equations; 402

C06 SHOKIN, Yu.I.; KHAKIMZYANOV, G.S.:
Numerical calculation of potential free-surface flows of ideal incompressible fluids; 408

C07 PANDOLFI, Maurizio:
Non-equilibrium hypersonic flows: Physics and numerics; 418

C08 ZHU, You-lan; CHEN, Bing-mu:
Some computed results of nonequilibrium gas flow with a complicated model; 428

C09 KOROBEINIKOV, V.P.:
Numerical modeling of gas flow with radiative-convective transfer of energy; 434

C10 KATSUKI, Masashi; MIZUTANI, Yukio:
Modeling of the mean reaction rate in turbulent premixed flames; 441

C11 NASTASE, Adriana:
The design of supersonic aircraft and space vehicles by using global optimization techniques; 447

C12 TAKAHASHI, Masahiro; HAYASHI, A. Koichi:
Numerical study on mixing of injecting jet into a hypersonic flow; 454

C15 ELIZAROVA, T.G.; CHETVERUSHKIN, B.N.:
Kinetal consistent finite-difference gasdynamic schemes; 493
<table>
<thead>
<tr>
<th>ID</th>
<th>Author</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C21</td>
<td>TANAKA, Junichi; NAKAMURA, Yoshiaki; YASUHARA, Michiru</td>
<td>Problems on collision sampling in the DSMC method;</td>
<td>499</td>
</tr>
<tr>
<td>C22</td>
<td>SHAKHOV, Evgenii M.</td>
<td>The problem on small local Knudsen numbers in computational rarefied gas dynamics;</td>
<td>505</td>
</tr>
<tr>
<td>C24</td>
<td>FUJIWARA, Toshi; REDDY, K.V.</td>
<td>Propagation mechanism of detonation—three-dimensional phenomena;</td>
<td>510</td>
</tr>
<tr>
<td>C26</td>
<td>ASO, Shigeru; TAN, Anzhong; TAKANO, Masanori; HAYASHI, Masanori</td>
<td>Numerical simulations of unsteady shock reflections by ramps;</td>
<td>518</td>
</tr>
<tr>
<td>C28</td>
<td>MATSUO, Yuichi; ARAKAWA, Chuichi; SAITO, Shigeru; KOBAYASHI, Hiroshi</td>
<td>Navier-Stokes simulations of flows around a high-speed propeller;</td>
<td>523</td>
</tr>
<tr>
<td>C29</td>
<td>HERRMANN, U.; KROLL, N.; RADESPIEL, R.; ROSSOW, C.C.; SCHÖNE, J.; SONAR, Th.</td>
<td>Analysis of three-dimensional aerospace configurations using the Euler and Navier-Stokes equations;</td>
<td>530</td>
</tr>
<tr>
<td>C30</td>
<td>FURUKAWA, M.; YAMASAKI, M.; INOUE, M.</td>
<td>A zonal approach for solving the Navier-Stokes equations using a TVD finite volume method;</td>
<td>540</td>
</tr>
<tr>
<td>C31</td>
<td>PAYNE, Fred R.</td>
<td>Numerical aerodynamics via formal integration: Laplace, Euler, Prandtl, Navier-Stokes and Reynolds equations;</td>
<td>548</td>
</tr>
<tr>
<td>C32</td>
<td>CHAKRABARTTY, Sunil K.</td>
<td>Computation of 2D Navier-Stokes equations;</td>
<td>554</td>
</tr>
<tr>
<td>C33</td>
<td>WANG, Ru-Quan; GAO, Zhi</td>
<td>Some aspects of the simplified Navier-Stokes equations and their numerical solutions;</td>
<td>559</td>
</tr>
<tr>
<td>D03</td>
<td>ISHIGURO, Tomiko; OGAWA, Satoru; WADA, Yasuhiro; MASUYA, Goro</td>
<td>Numerical computations of supersonic chemically reacting flows using hydrogen-air combustion models;</td>
<td>565</td>
</tr>
<tr>
<td>D04</td>
<td>REDDY, K. Viswanath; FUJIWARA, Toshi</td>
<td>Chemically nonequilibrium flow over a blunted cylinder at high angles of attack;</td>
<td>573</td>
</tr>
<tr>
<td>D05</td>
<td>FUJIWARA, Toshi; MATSUO, Akiko</td>
<td>Oxyhydrogen oblique detonation supported by two-dimensional wedge;</td>
<td>580</td>
</tr>
<tr>
<td>D06</td>
<td>NAGAOKA, Makoto; KAWAZOE, Hiromitsu; OHIWA, Katsuyuki</td>
<td>Prediction of the fuel-air mixture formation process in a gasoline engine;</td>
<td>587</td>
</tr>
<tr>
<td>D08</td>
<td>GU, Chun-Yuan; FUCHS, Laszlo</td>
<td>Computations of Euler equations in three dimensional complex geometries;</td>
<td>595</td>
</tr>
<tr>
<td>D11</td>
<td>WATANABE, Yoshi; OSHIMA, Yuko</td>
<td>Numerical and experimental study of flow field in a console;</td>
<td>601</td>
</tr>
<tr>
<td>D12</td>
<td>SUNAYAMA, Yoshiihiko; OYAMA, Makoto; TERADA, Yoshiyuki; ABE, Jumpei; OGATA, Hiroyuki; SAKAGAMI, Kentaro; ITO, Yukio; OBA, Risaburo</td>
<td>Numerical simulations of locally fluctuating flows near the leading- and the trailing edge of a hydrofoil in a steady inflow</td>
<td>607</td>
</tr>
<tr>
<td>D13</td>
<td>SHIMURA, Masayuki; KAWAHARA, Mutsuto</td>
<td>A finite element flow analysis on the open boundary problems;</td>
<td>613</td>
</tr>
<tr>
<td>D14</td>
<td>HORINOUCHI, Nariaki; KONDOH, Tsuguo</td>
<td>Numerical investigation of the flow around a road vehicle;</td>
<td>618</td>
</tr>
</tbody>
</table>