Table of contents

Preface IX
Organization X

1 Production, technology and properties

On production and application of AAC worldwide
W. Dubral
3

Influence of hydrothermal processing on the properties of autoclaved aerated concrete
T. Mitsuda, T. Kiribayashi, K. Sasaki & H. Ishida
11

Influence of particle size of quartz on the tobermorite formation
T. Mitsuda, K. Sasaki & H. Ishida
19

Influence of quartz particle size on the chemical and mechanical properties of autoclaved lightweight concrete
N. Isu, S. Teramura, K. Ido & T. Mitsuda
27

Following up the setting of cellular concrete by acoustic test
C. Boutin & L. Arnaud
35

Unit weight reduction of fly ash aerated concrete
F. Pospisil, J. Jambor & J. Belko
43

2 Pore structure and properties

Pore structure and moisture characteristics of porous inorganic building materials
S. Tada
53

Application of image analysis to the estimation of AAC thermal conductivity
J. P. Laurent & C. Frendo-Rosso
65

Porosity and permeability of autoclaved aerated concrete
F. Jacobs & G. Mayer
71

Effect of size distribution of air pores in AAC on compressive strength
G. Schober
77
3 Heat and mass transfer

The thermal performance of European autoclaved aerated concrete
W.R.Millard

Recent results on thermal conductivity and hygroscopic moisture content of AAC
E.Frey

An experimental study on thermal transmission properties of aerated concrete composite panels
C.Liu & J.Wang

The effect of moisture on the thermal conductivity of AAC
K.F.Lippe

Application of autoclaved aerated concrete for high-temperature insulation
E.Schlegel & J.Volec

Experimental determination of AAC moisture transport coefficients under temperature gradients
J.-F.Daian & J.A.Bellini da Cunha

Determination of hydral diffusion coefficients of AAC – A combined experimental and numerical method
X.Wittmann, H.Sadouki & F.H.Wittmann

Capillary suction of AAC
J.Pražák & P.Lunk

Investigation of moisture contents of autoclaved lightweight concrete walls in cold districts
T.Hasegawa

4 Crack formation and durability

Fracture energy experiments of AAC and its fractal analysis
W.Zhou, N.Feng & G.Yan

Fracture energy and strain softening of AAC
V.Slowik & F.H.Wittmann

Influence of fracture energy on failure of AAC-elements
A.M.Alvaredo & F.H.Wittmann

Mechanism of frost deterioration of AAC
O.Senbu & E.Kamada

Frost resistance of increased density autoclaved aerated concrete
Y.Hama, M.Tabata, T.Watanabe & E.Kamada

Chemical resistance of AAC
G.Spicker
5 Reinforced components

Researches for the design of reinforced aerated concrete beams
K.Janovic & E.Grasser
173

The bond stresses of AAC and slips of reinforcement bars
K.Hanecka
181

Initial steel stresses in reinforced AAC units
A.Koponen & J.Niemenen
187

Prestressed concrete bars as reinforcement for AAC
H.-G.Kessler
195

Aerated concrete used in composite action with ordinary concrete – From blocks to elements
B.G.Hellers & O.Lundvall
201

Survey on the European standardization work of CEN/TC 177: Intended EN ‘Prefabricated reinforced AAC components’
D.Bertram & N.Fichtner
209

Intended European Standards (EN) ‘Test methods for autoclaved aerated concrete’ in CEN/TC177: An overview
D.Van Nieuwenburg & S.Karl
215

Intended European Standards (EN) ‘Test methods for autoclaved aerated concrete’ in CEN/TC177: Some new ideas and proposals
D.Van Nieuwenburg & B.De Blaere
221

6 Masonry

The practical use of AAC masonry to meet the performance requirements of buildings in Europe
C.A.Fudge & A.H.Riza
231

Compressive strength and modulus of elasticity of AAC masonry
P.Schubert & U.Meyer
237

From the compressive strength of the units to the compressive strength of masonry built with thin layer mortar
K.Kirtschig
245

Mathematical model applied to AAC masonry with thin joints
P.Delmotte & J.D.Merlet
251

Shear capacity of mortar joints in masonry with AAC-precision blocks
Friedrich Fath
259

The recent activities of CEN TC 125 – Masonry
Norman J.Bright
263
7 Ecology and new developments

Ecological aspects for the production and use of autoclaved aerated concrete
D. Hums

New research on the primary energy content of building materials
J. Lutter

Possibilities to dispose of waste autoclaved aerated concrete (AAC)
I. Lang-Beddoe

A study on using waste residue of ALC as a resource of building materials
N. Feng, X. Ji & J. Hu

Autoclaved cementitious products using pulverised fuel ash
R. A. Carroll & J. C. Payne

Ashes from fluidized bed combustion power plants as a potential raw material for the production of autoclaved aerated concrete
M. Jakob & H. Mörtel

Extension of the range of primary materials for the production of AAC
I. Weretevskaja & N. Sudelainen

Sintered foamed fly ash and acid compositon and fly ash floater and acid material as alternatives to cellular concrete
C. M. Dry

Autoclaved coal ash lime bricks
G. Usai

Bibliography on autoclaved aerated concrete 1982-1992
S. Tada

Author index