Industrial Minerals in the Basin and Range Region—Workshop Proceedings

EDWIN W. TOOKER, Compiler-Editor

Prepared in cooperation with the U.S. Bureau of Mines, the Nevada Bureau of Mines and Geology, the Utah Geological Survey, and the Idaho Geological Survey

Presentations and discussion at a workshop held May 30, 31, and June 1, 1990, in Salt Lake City, Utah, to consider the current status, regulatory problems, projected needs, and future plans for improving the availability of industrial-mineral resources in the Basin and Range States of Nevada, Utah, and Idaho

U.S. GEOLOGICAL SURVEY BULLETIN 2013
Assessment of present and future production of industrial minerals the Basin and Range region—Continued

Industrial minerals in Nevada, by S.B. Castor—Continued

Clay 25
Diatomite 25
Fluorspar 25
Garnet 25
Gypsum 25
Lime and limestone 27
Lithium carbonate 27
Magnesia 28
Perlite 28
Salt 28
Silica 28
Wollastonite 28
Zeolite 28

Industrial minerals in Idaho, by E.H. Bennett 28
Phosphate 29
Sand and gravel 31
Pumice 31
Perlite 31
Scoria 31
Garnet 32
Limestone and cement 32
Clay 32
Silica 32
Building stone 32
Diatomite 32
Zeolites 32
Gypsum 32
Gem stones 32
Aluminum recycling 34
Potential deposits 34

Future needs and problems in the Basin and Range region, B.W. Buck, moderator 34

Growth of population and limitations on resource availability, by Robert Buchanan 35

Shifting environmental priorities 35
Factors of urban sensitivity 35
Beck Street gravel-excavation operation 36
Developing a proactive stance 36
Concluding recommendation 36
Participants’ discussion and comments 37

Recommendations for better industry-government cooperation 37

NDM reply 37
NBMG reply 37
UGS reply 37
IGS comment 37

Industry environmental concern 38
Long-range resource planning 39

Environmental concerns for land, air, and water, by James Scherer 39

Toxic waste at Superfund sites 40
Air quality and health protection 40
Air quality and visibility 40
Future needs and problems in the Basin and Range region, B.W. Buck, moderator

Continued

Environmental concerns for land, air, and water, by James Scherer—Continued

Increased future cost for mining 40
Water issues 40
Industrial-mineral issues delegated to the States 41
The EPA's new proactive image 41
Planning avoids conflict 42
New operating role for the EPA 42
Concluding thoughts on the future of the EPA 43
Participants' discussion and comments 43

Interstate activity in the formulation of regulations governing mine waste, by

D.R. Nielson 44
Background—the problem 44
The States' response 45
Formation of the MWTF 45
Regulatory-program position—a solution 46
What the process cannot do 46
Participants' discussion and comments 47

A perspective on regional industrial-mineral problems, J.E. Christensen, moderator 48

Economic problems of industrial-mineral mining, C.W. Berry, convenor 48

Industrial-mineral marketing, by L.I. Wiener 48
Occurrence of gilsonite 49
Mining and marketing of gilsonite 49
Industrial uses for gilsonite 49
Marketing factors 49
Early marketing experience 50
Current marketing efforts 50
New marketable products 50
Marketing matrix 51
Summary 51
Participant's comment 52

The art of financing an industrial-mineral enterprise, by R.W. Bernick, Sr. 52

Typical loan requirements 52
Cash-flow considerations 52
CPA assistance needed 53
Security for the lender 53
Value added and other considerations 53

Problem of business deals, taxes, and economic analysis, by C.W. Berry 53

Business deals 53
Mineral-leasing problems 54
Tax considerations 54
Other cost factors 54
Economic analysis 55
Economic analysis for the State of Utah 56
Participants' discussion and comments 56

Environmental and support-system problems for industrial-mineral mining, B.W. Buck, convenor 57

Land-access issues from the Federal perspective, by S.J. Brooks 58
Use of industrial-mineral resources in the Salt Lake District 58
Access to locatable-, leasable-, and salable-mineral lands 58
Concluding remarks 59
Problems of mine permitting in the Great Basin, by G.M. Eurick 59
A perspective on regional industrial-mineral problems, J.E. Christensen, moderator—Continued

Environmental and support-system problems for industrial-mineral mining, B.W. Buck, convenor—Continued

Problems of mine permitting in the Great Basin, by G.M. Eurick—Continued

Mining-regulation actions at Mercur, Utah 59
Federal actions 59
State actions 59
County actions 60
Pending environmental regulatory activity 60
Conclusions 61

Environmental problems in planning mining-support systems, by C.L. Smith 61

Legislation 61
Company economic benefits 61
Public involvement 62
Regional socioeconomics 62
Project development and the environmental-planning process 62

Infrastructure, or support systems 62
Support systems 62
Water 63
Water-discharge systems 63
Electrical power 63
Energy fuels 63
Communication 63
Transportation 63
Labor 63
Other socioeconomic considerations 64

Example of the Conda-to-Pocatello, Idaho, phosphate-slurry pipeline project 64
Water demand 64
Wastewater discharge 64
Fisheries 64
Access roads 65
Visual characteristics 65
Socioeconomics 65

Conclusion 65
Participants’ discussion and comments 65

Industrial minerals from the perspective of government, M.L. Allison, moderator 68

Politics and industrial minerals, by Gov. Scott M. Matheson 69
Public recognition through education 69
An industry identity gap 70
Can the industry survive and prosper? 70
Industry’s dependence on government 71
Options for success 71

Expanding industrial-mineral opportunities in the Basin and Range region, R.C. Bradt, moderator 73

Potential for the use of industrial minerals in advanced-material applications, by G.R. Hyde 73
What are advanced materials? 73
Special properties and types of advanced materials 74
Quantities of component materials required 75
Conclusions 75
Expanding industrial-mineral opportunities in the Basin and Range region.
R.C. Bradt, moderator—Continued

Governmental and academic research applicable to the industrial-mineral industry 76

USBM research activities, by G.R. Hyde 76
Resource-availability issues 76
Environmental issues 76
Technological issues 76
New markets, new materials 76
Conclusions 77

USGS industrial-mineral-research activities, by M.P. Foose 77
USGS mineral programs 77
Types of USGS research activities 78
Concluding thought 78

Research potential of the State geological surveys and universities, by J.G. Price 79

What's happening in Nevada? 79
Geologic maps are needed 79
Mineral-resource reports 79
Sources of resource expertise 80
Manpower and funding 80
Providing future employees 81
Current research frontiers 81
Conclusions 81

Participants' discussion and comments 82

New-market development: How it has been done, R.C. Bradt, moderator 84

Developing new markets for beryllium, a high-value specialty material, by T.B. Parsonage 84
Special properties of beryllium 85
New-market-development problems 86
Conclusions 87

New-product development from low-value material by the Idaho Quartzite Corporation, by Donald Seehausen 87
Origin of the Idaho Quartzite Corporation 87
New-product development 88
Marketing strategies 88
Concluding comments 89
Participants' discussion and comments 90

Industrial-mineral opportunities derived from an effective public-relations effort 90

Public education through public-relations expertise and technology, by John Marz 90

Objectives of a public-relations plan 91
Operational plan for public relations 92
Reaching the general public 92
Reaching opinion leaders 93
We set up a speakers' bureau 93
Reaching the legislators 93
Reaching the press 93
Concluding thoughts 93
Participants' discussion and comments 94

Future actions to meet industrial-mineral needs, J.G. Price, moderator 96

What are the problems to be solved? 96

Industry perspective for high-volume, low-value materials, by Douglas Clark 96

Environmental problems 97
Future actions to meet industrial-mineral needs, J.G. Price, moderator—Continued

What are the problems to be solved?—Continued

Industry perspective for high-volume, low-value materials, by Douglas Clark—Continued

- Zoning and reclamation 97
- Materials specifications 97
- Improved materials-testing methods 98
- Economic-use factor 98

Industry perspective for low-volume, high-value commodities, by J.R. Harmon 98

The land planner’s perspective—local-government regulation of mining activities, by Michael Harper 99

- Industry’s planning responsibilities 99
- Local government’s planning responsibilities 100
- The Washoe County planning process 101
- Concluding thoughts 101

Participants’ discussion and comments 101

Possible resource-constituency activities to help solve industrial-mineral problem 104

Proposal for organizing industrial-mineral coalitions in the Western States, by M.P. Foose 104

- Coalition formation 104
- Concluding thoughts 105

The Interstate Mining Compact Commission, an established regional organization, by G.E. Conrad 105

- What is a compact? 106
- The Interstate Mining Compact 106
 - Origin 106
 - Purpose 106
 - Operational philosophy 107
 - Benefits 107
- The functions of coalitions 107
 - National coalitions 108
 - Regional coalitions 108
- Advice for forming coalitions 108
- The principle of cooperative federalism 108
 - Elements of cooperative federalism 109
 - The role of the States 109
 - Federal-State balance 109
- Concluding thoughts 110

State Geologists’ views about the concept of State or regional industrial-minerals coalitions, by J.G. Price 110

Some additional observations about coalitions, by E.H. Bennett 111

A Utah perspective on the coalition proposal, by M.L. Allison 112

Participants’ discussion and comments 113

Summary of the discussion about the creation of an industrial-minerals coalition in the Western States, by E.W. Tooker 118

- What an industrial-minerals coalition should not be 119
- What an industrial-minerals coalition should be 119
- Elements necessary for the success of a coalition 119
- Conclusions 120

Closing comments from the workshop sponsors and organizing committee, by M.P. Foose 120

References cited 121
APPENDIXES

1. Program for the third industrial-minerals workshop 124
2. Significant industrial rock and mineral quarries, pits, and plants in Utah with recent production 126
3. “Strawman” proposal for an industrial-minerals coalition in the Western United States as the basis for its consideration by the workshop 130
4. Structure of a formal coalition such as the Interstate Mining Compact Commission, by G.E. Conrad 131
5. Amendments to California’s SMARA legislation, which became effective on January 1, 1991 132

FIGURES

Photographs of typical industrial-mineral operations in the Basin and Range States of Nevada, Utah, and Idaho Cover
1. Plot of annual production of crushed stone and sand and gravel in the United States, 1948–88 8
2. Plot of annual public expenditures on construction work as a percentage of the GNP, 1940–87 10
3. Plot of annual production of sand and gravel in Utah, 1950–90 12
4. Sketch map of Utah, showing locations of cement-rock occurrences and cement operations in 1990 13
5. Sketch map of Utah, showing locations of halite occurrences and operations in 1990 14
6. Plot of annual production of halite in Utah, 1950–90 15
7. Sketch map of Utah, showing locations of potash, magnesium chloride, sodium sulfate, and alunite occurrences and operations in 1990 15
8. Photograph of Magnesium Corp. of America (MAGCORP)’s operation on the Great Salt Lake for production of magnesium and chloride brine 16
9. Sketch map of Utah, showing locations of phosphate occurrences and operations in 1990 17
10. Plot of annual production of stone in Utah, 1950–90 18
11. Sketch map of Utah, showing locations of active limestone and dolomite operations in 1990 19
12. Plot of annual production of lime in Utah, 1950–90 19
13. Sketch map of Utah, showing locations of active clay operations in 1990 20
14. Plot of annual production of clay in Utah, 1950–90 20
15. Sketch map of Utah, showing locations of gypsum occurrences and operations in 1990 21
16. Plot of annual production of gypsum in Utah, 1973–90 21
17. Plot of value of annual production of industrial minerals and metals in Nevada, 1950–90 22
18. Plot of value of annual production of industrial minerals in Nevada, 1950–90 22
19. Sketch map of Nevada, showing locations of industrial-mineral operations and production in 1989 and (or) 1990 23
20. Bar chart showing annual production of barite in Nevada, 1952–90 24
21. Photograph of diatomaceous-earth mine operated by Eagle-Picher near Lovelock, Nev. 26
22. Photograph of Daisy fluorite mine operated by J. Irving Crowell, Jr., and Son near Beatty, Nev. 26
23. Bar chart showing annual production of gypsum in Nevada, 1952–89 27
24. Photograph of new lime plant operated by Continental Lime, Inc., near Wendover, Nev. 27
25. Sketch map of Idaho, showing locations of active industrial-mineral operations in 1989 29
26. Sketch map of Idaho, showing locations of potential deposits or occurrences of industrial minerals 30
27. Sketch map of Pocatello, Idaho, area, showing location of the Idaho phosphate district 31
28. Photograph of new filler-lime plant operated by the Idaho Limestone Co. 33
29. Photograph showing typical ridgetop outcrops of Idaho quartzite 33
30. Photograph of new aluminum-recycling plant operated by International Mill Service Aluminum Metal, Inc. (INSAMET), at Hauser Lake, Idaho 34
31. Diagram illustrating the American Gilstonite Co.'s market-development product matrix 51
32. Diagram illustrating relation between conventional and advanced materials 74
33. Plot of value of annual production per mine worker in Nevada 81
34. Pie chart showing consumption of Bruch Wellman, Inc., reserves of beryllium ore 84
35. Photograph of Brush Wellman, Inc.'s ore-concentration facility at Delta, Utah 85
36. Photograph of a generic lightweighted beryllium mirror blank, an example of a complex precision-formed component that can be made almost directly, without machining 86

TABLES

1. Production of aggregate in the United States in 1989 7
2. Regions of major production of crushed rock and sand and gravel in the United States in 1989 7
3. Five leading States in order of production of crushed stone, sand and gravel, and aggregate in 1989 7
4. Growth of production of construction material in the United States between 1948 and 1989 8
5. Industrial minerals produced in Nevada 22
6. Industrial-mineral operations, by location and operator, in Nevada with production in 1989 and (or) 1990 24
7. Value of industrial minerals in Idaho 28
8. Potential political, business, and technical risks affecting a mining operation 55
9. Calculation of present value using constant money and current (inflated) cash-flow 55
10. Federal-agency environmental regulatory determinations for the Mercur mine, Tooele and Utah Counties, Utah 59
11. State-agency environmental regulatory determinations for the Mercur mine, Tooele and Utah Counties, Utah 60
12. Local-agency environmental regulatory determinations for the Mercur mine, Tooele and Utah Counties, Utah 60
13. Typical material properties of lightweighted beryllium mirror 87