Lignin Valorization
Emerging Approaches

Edited by

Gregg T. Beckham
National Renewable Energy Laboratory, CO, USA
Email: gregg.beckham@nrel.gov
Contents

Chapter 1 A Brief Introduction to Lignin Structure 1
Rui Katahira, Thomas J. Elder and Gregg T. Beckham

1.1 Introduction 1
1.2 Lignin Structure 2
1.2.1 Side Chain Structure in the End-group 4
1.2.2 Acylated End-groups 6
1.2.3 Lignin Interunit Linkages 8
1.2.4 Lignin Functional Groups 11
1.2.5 Linkages between Lignin and Polysaccharides 13
1.3 Scope of This Book 15
Acknowledgements 15
References 15

Chapter 2 Lignin Isolation Methodology for Biorefining, Pretreatment and Analysis 21
Joseph J. Bozell, Stephen E. Chmely, William Hartwig, Rebecca Key, Nicole Labbé, Preenaa Venugopal and Ernesto Zuleta

2.1 Introduction 21
2.2 Isolation of Lignin for Analysis 22
2.2.1 Klason Lignin 22
2.2.2 Dioxane Lignin (DL) 23
2.2.3 Björkman Lignin 24
2.2.4 Cellulolytic Enzyme Lignin (CEL) 24
2.2.5 Other Lignin Isolation Techniques 25
2.3 Isolation of Lignin after its Removal from Biomass – Production within the Pulp and Paper Industry 25
 2.3.1 Kraft Process 25
 2.3.2 Sulfite Pulping and Lignosulfonates 27

2.4 Lignin Isolation via Fractionation 29
 2.4.1 Organosolv Processes 29
 2.4.2 Ionic Liquid Fractionation 35
 2.4.3 Dilute Acid (DA) Pretreatment and Fractionation 39
 2.4.4 Steam Explosion 43
 2.4.5 Liquid Hot Water (LHW) 44
 2.4.6 Ammonia-based Fractionation and Pretreatment 46
 2.4.7 Thermochemical Conversion followed by Fractionation: Isolation of Pyrolytic Lignin 47

2.5 Conclusions 49
References 50

Chapter 3 Lessons Learned from 150 Years of Pulping Wood 62
Carl Houtman

3.1 History 62
3.2 Chemistry 65
 3.2.1 Delignification Chemistry 65
 3.2.2 Alkaline Pulping Chemistry 66
 3.2.3 Neutral Pulping Chemistry 67
 3.2.4 Acidic Pulping Chemistry 67
3.3 Paper Industry Attempts to Get More Than Energy out of Lignin 68
 3.3.1 Lignin Sulfonate 68
 3.3.2 Vanillin Production 68
 3.3.3 Kraft Lignin Recovery 69
 3.3.4 Black Liquor Gasification 70
3.4 Conclusions 71
References 71

Chapter 4 Thermal and Solvolytic Depolymerization Approaches for Lignin Depolymerization and Upgrading 74
Anders Jensen, Joachim Bachmann Nielsen, Anker Degn Jensen and Claus Felby

4.1 Lignin Refining 74
 4.1.1 Liquefaction 75
Chapter 5 Early-stage Conversion of Lignin over Hydrogenation Catalysts
Roberto Rinaldi

5.1 Introduction
5.2 Early-stage and Late-stage Catalytic Conversion of Lignin
5.3 Deconstruction of Lignocellulose Based on ECCL
5.4 Processes Taking Place in the Lignocellulosic Matrix
5.5 Processes Occurring on Lignin Dissolved in the Liquor
5.6 Catalytic Processes Involving the Lignin Species Dissolved in the Liquor
5.7 Outlook
Acknowledgements
References

Chapter 6 Oxidative Valorization of Lignin
Ruoshui Ma, Mond Guo and Xiao Zhang

6.1 Introduction
6.2 Electron Flux through the Lignin Biosynthesis Pathway
 6.2.1 Electron Flux through the Shikimate Pathway and Phenylpropanoid Pathway
 6.2.2 Electron Flux through the Polymerization Process
6.3 Rationale for Employing an Oxidative Approach
6.4 Recent Advances in Catalytic Oxidation of Biorefinery Lignin
6.5 Oxidative Cleavage of Inter-unit Linkages
6.6 Oxidative Modification of Lignin Side-chain
6.7 Oxidation of the Aromatic Ring and
Ring Cleavage Reactions 144
6.8 Conclusions and Future Perspective 147
References 148

Chapter 7 Catalytic Conversion of Lignin-derived Aromatic
Compounds into Chemicals 159
Christopher S. Lancefield, Bert. M. Weckhuysen and
Pieter C. A. Bruijinincx

7.1 General Introduction 159
 7.1.1 Lignocellulosic Biomass in the
 Bioeconomy 159
 7.1.2 The Need for Lignin Valorization 160
 7.1.3 Lignin as a Source of Aromatics 161
 7.1.4 Lignin Biosynthesis, Structure and
 Considerations 162
 7.1.5 Challenges in Lignin-derived Aromatic
 Chemicals 162

7.2 Catalytic Processing of Monomers from the
Selective Depolymerization of Lignin 165
 7.2.1 Introduction – Simple Mixtures of
 Mono-aromatic Chemicals from Lignin 165
 7.2.2 4-(1-Propenyl)phenols 167
 7.2.3 4-Methylphenols 169
 7.2.4 4-Propylphenols 172
 7.2.5 3-Hydroxy-1-aryl-propanones 174
 7.2.6 Vanillin and Syringaldehyde 177
 7.2.7 Guaiacol and Syringol 179

7.3 Lignin Pendent and End-groups as a Source of
Renewable Aromatics 180
 7.3.1 Monolignol Plasticity in Lignification 180
 7.3.2 p-Hydroxybenzoates 182
 7.3.3 p-Coumaric Acid 185
 7.3.4 Tricin 186
 7.3.5 Non-aromatic Building Blocks: Muconic
 Acid and Its Derivatives 187
 7.3.6 Yields of Monomers Obtainable from
 Pendent Groups 187

7.4 Conclusions 188
 7.4.1 Summary 188
 7.4.2 Product Functionality 188
Chapter 8 **Biological Lignin Degradation**
* A. T. Martinez, S. Camarero, F. J. Ruiz-Dueñas and M. J. Martinez

8.1 Historical Perspective for Lignin Biodegradation Studies 199
8.2 Fungal Degradation of Lignin: A Complex Multi-enzymatic Process 200
8.3 Long-range Electron Transfer (LRET) Characterizes Ligninolytic Peroxidases 205
8.4 Indirect Degradation of Lignin by Other Fungal Oxidoreductases 207
8.5 Key Enzymes in Lignin Degradation as Revealed by Genomic Analyses 208
8.6 Enzymatic Degradation of Lignin and Lignin Products by Bacteria 209
8.7 Bacterial DyPs and Lignin Degradation 210
8.8 Stereoselectivity in Lignin Decay: The Exception that Proves the Rule 212
8.9 Lignin-degrading Enzymes in Lignocellulose Biorefineries 213
8.10 Conclusion 215
Acknowledgements 216
References 216

Chapter 9 **Bacterial Enzymes for the Cleavage of Lignin β-Aryl Ether Bonds: Properties and Applications**
* Yudai Higuchi, Kenji Takahashi, Naofumi Kamimura and Eiji Masai

9.1 Introduction 226
9.2 Catabolic Pathway and Enzyme Genes for the Cleavage of β-Aryl Ether in *Sphingobium* sp. Strain SYK-6 228
9.3 Functions and Structures of β-Etherases 233
9.4 Functions and Structures of Glutathione-removing Enzymes 238
Chapter 10 Using Aerobic Pathways for Aromatic Compound Degradation to Engineer Lignin Metabolism

Sarah C. Seaton and Ellen L. Neidle

10.1 Pathway Discovery and Principles: A Historical Perspective
10.1.1 The Devil in the Detail
10.2 Lower-pathway Basics: Ortho (Intradiol), Meta (Extradiol), and Other Types of Ring Cleavage
10.2.1 Catechol
10.2.2 Protocatechuate
10.2.3 Gallate
10.2.4 3-O-Methylgallate
10.2.5 Additional Entry Points to Lower Pathways
10.3 Upper-pathway Diversity: Vastly Different Compounds Can be Funneled into the Lower Pathways
10.3.1 What Are the Upper Pathways Most Relevant to Lignin Metabolism?
10.3.2 Small Lignin Oligomers
10.3.3 Syringaldehyde, Syringate, Vanillin, Vanillate, and Veratryl Alcohol
10.3.4 Hydroxycinnamates: Ferulate, p-Coumarate, and Caffeate
10.3.5 Guaiacol, Benzoate, and Phenol
10.4 Transport
10.4.1 ATP-binding Cassette Transport Systems
10.4.2 Major Facilitator Superfamily Transporters
10.4.3 Additional Proteins Involved in the Uptake of Aromatic Compounds
10.5 Genetic Organization and Regulatory Control
10.5.1 Genomic Clustering of Catabolic Genes
10.5.2 Mobile Genetic Elements
10.5.3 Transcriptional Regulation
10.5.4 Global Control and Hierarchical Substrate Utilization
Chapter 11 Biological Funneling as a Means of Transforming Lignin-derived Aromatic Compounds into Value-added Chemicals

Lindsay D. Eltis and Rahul Singh

11.1 Introduction 290
11.2 Applicability of Biological Funneling 293
11.3 Convergent Catabolism of Aromatic Compounds 294
11.4 Transport 298
11.5 Bacterial Ligninases 299
11.6 Chassis for Lignin-transforming Biocatalysts 301
11.7 Biological Funneling 302
11.8 Modeling Metabolism 305
11.9 Genome-editing Tools 307
11.10 Bioprospecting for New Activities 307
11.11 Conclusion 308
References 308

Chapter 12 Systems Biology Analyses of Lignin Conversion

Zhi-Hua Liu and Joshua S. Yuan

12.1 Introduction 314
12.2 Chemical Characteristics, Biodegradation, and Bioconversion of Lignin 316
12.3 Genomics 319
12.4 Transcriptomics 323
12.5 Proteomics 325
12.6 Metabolomics 327
12.7 Concluding Remarks 328
Acknowledgements 329
References 329
Chapter 13 Anaerobic Pathways for the Catabolism of Aromatic Compounds

13.1 Introduction

13.2 Benzoyl-CoA Central Pathway

13.2.1 Upper Benzoyl-CoA Pathway

13.2.2 Lower Benzoyl-CoA Pathway

13.3 Central Pathways for Degradation of Substituted Benzoyl-CoA Analogs

13.3.1 3-Hydroxybenzoyl-CoA Catabolism

13.3.2 3-Methylbenzoyl-CoA Catabolism

13.3.3 4-Methylbenzoyl-CoA Catabolism

13.4 Peripheral Pathways for the Anaerobic Catabolism of Aromatic Compounds

13.4.1 Catabolism of Hydroxybenzoates

13.4.2 Catabolism of Halobenzoates

13.4.3 Catabolism of Aminobenzoates

13.4.4 Catabolism of Phenylalanine/Phenylacetate

13.4.5 Catabolism of Tyrosine/4-Hydroxyphenylacetate

13.4.6 Catabolism of Tryptophan/Indoleacetate

13.4.7 Catabolism of Phenylpropanoids

13.4.8 Catabolism of Aromatic Alcohols

13.4.9 Catabolism of Phenolic Compounds

13.4.10 Catabolism of Phthalates

13.4.11 Catabolism of Aromatic Hydrocarbons

13.5 Anaerobic Degradation of Aromatic Compounds with meta-Positioned Hydroxyl Groups

13.5.1 Catabolism of Resorcinol and Resorcylates

13.5.2 Catabolism of Trihydroxybenzenes: Pyrogallol, Phloroglucinol, and HHQ

13.6 Systems Biology View of the Anaerobic Catabolism of Aromatic Compounds

13.6.1 The Metabolic Response

13.6.2 The Stress Response

13.6.3 The Social Response

13.7 Applications Derived from the Anaerobic Catabolism of Aromatic Compounds

13.7.1 Molecular Biomarkers
Chapter 14 Biogas Production from Lignin via Anaerobic Digestion

Daniel Girma Mulat and Svein Jarle Horn

14.1 Introduction 391
14.1.1 Biorefineries and Lignin-rich Residues 391
14.1.2 Anaerobic Digestion 392
14.2 Biogas from Lignin Building Blocks 399
14.3 Biogas from Polymeric and Oligomeric Lignin 400
14.4 Methods for Enhancing Biogas Production from Lignin 401
14.5 Inhibitory effect of Lignin-derived Aromatic Compounds on Microbial Community 405
14.6 Conclusion 406
Acknowledgements 407
References 407

Chapter 15 Lignin Analytics

Heiko Lange, Paola Gianni and Claudia Crestini

15.1 Introduction 413
15.1.1 General Aspects of Lignin Formation and Function In Planta, Lignin Structure and Lignin Analytics 414
15.2 Analysis of Non-isolated Lignins 419
15.2.1 Current Mainstream Analyses 419
15.3 Analysis of Isolated Lignins 423
15.3.1 Types of Isolated Lignins 423
15.3.2 Analysis of Isolated Lignins 426
15.4 Fractionated and Depolymerized Lignins 450
15.4.1 Strategies for Lignin Fractionation 451
15.4.2 Strategies for Lignin Depolymerization 451
15.4.3 Analysis Methods for Depolymerized Lignins 454
15.5 *In Silico* Considerations Regarding Isolated and Non-isolated Lignins

15.6 Conclusion

Conflicts of Interest

References

Chapter 16 Lignin Visualization: Advanced Microscopy Techniques for Lignin Characterization

Yining Zeng and Bryon S. Donohoe

16.1 Background

16.1.1 Lignin’s Multifaceted Role in Plant Cell Walls

16.1.2 Models of Lignin Distribution and Interactions with Other Cell Wall Polymers

16.1.3 Tracking the Fate of Lignin Biomass Conversion

16.2 Current Tools for Lignin Visualization and Localization

16.2.1 Cytochemical Stains Used to Localize Lignin for Visualization by Optical Microscopy

16.2.2 Antibodies for Immuno-localization of Lignin Epitopes

16.2.3 Direct Fluorescent Labeling Monolignols and Chemical Reporter Approaches

16.2.4 Spectroscopic Tools for Detecting Lignins

16.3 Challenges and Future Prospects

16.3.1 3D Microscopy

16.3.2 Imaging Mass Spectroscopy

16.3.3 Label-free Super Resolution Microscopy

16.4 Conclusions

Acknowledgements

References

Chapter 17 Adding Value to the Biorefinery with Lignin: An Engineer’s Perspective

Mary J. Biddy

17.1 Introduction

17.2 Techno-economic Analyses: The Motivation and Approach