Leavitt Path Algebras
Contents

1 The Basics of Leavitt Path Algebras: Motivations, Definitions and Examples ... 1
 1.1 A Motivating Construction: The Leavitt Algebras 2
 1.2 Leavitt Path Algebras .. 5
 1.3 The Three Fundamental Examples of Leavitt Path Algebras 10
 1.4 Connections and Motivations: The Algebras of Bergman, and Graph C*-Algebras .. 12
 1.5 The Cohn Path Algebras and Connections to Leavitt Path Algebras ... 14
 1.6 Direct Limits in the Context of Leavitt Path Algebras 23
 1.7 A Brief Retrospective on the History of Leavitt Path Algebras ... 30

2 Two-Sided Ideals .. 33
 2.1 The Z-Grading ... 36
 2.2 The Reduction Theorem and the Uniqueness Theorems 46
 2.3 Additional Consequences of the Reduction Theorem 54
 2.4 Graded Ideals: Basic Properties and Quotient Graphs 56
 2.5 The Structure Theorem for Graded Ideals, and the Internal Structure of Graded Ideals ... 65
 2.6 The Socle .. 76
 2.7 The Ideal Generated by the Vertices in Cycles Without Exits ... 83
 2.8 The Structure Theorem for Ideals, and the Internal Structure of Ideals .. 89
 2.9 Additional Consequences of the Structure Theorem for Ideals. The Simplicity Theorem .. 97

3 Idempotents, and Finitely Generated Projective Modules 103
 3.1 Purely Infinite Simplicity, and the Dichotomy Principle 104
 3.2 Finitely Generated Projective Modules: The \(\gamma \)-Monoid 108
 3.3 The Exchange Property .. 116
 3.4 Von Neumann Regularity .. 121
 3.5 Primitive Non-Minimal Idempotents 125
7.3.3 The Classification Question for Graphs with Finitely Many Vertices and Infinitely Many Edges ... 270
7.3.4 Graded Grothendieck Groups, and the Corresponding Graded Classification Conjecture ... 271
7.3.5 Connections to Noncommutative Algebraic Geometry 273

References .. 275

Index .. 283