Linear Algebra and Matrices

Shmuel Friedland Mohsen Aliabadi
University of Illinois at Chicago
Chicago, Illinois

Contents

Preface ix
List of Symbols xi
1 Basic facts on vector spaces, matrices, and linear transformations 1
1.1 Vector spaces 1
1.2 Dimension and basis 3
1.3 Matrices 13
1.4 Sum of subspaces 24
1.5 Permutations 30
1.6 Linear, multilinear maps and functions (first encounter) 34
1.7 Definition and properties of the determinant 41
1.8 Permanents 52
1.9 An application of the Philip Hall theorem 56
1.10 Polynomial rings 61
1.11 The general linear group 67
1.12 Linear operators (second encounter) 69
2 Canonical forms 75
2.1 Jordan canonical forms 75
2.2 An application of diagonalizable matrices 83
2.3 Matrix polynomials 87
2.4 Minimal polynomial and decomposition to invariant subspaces 91
2.5 Quotient of vector spaces and induced linear operators 99
2.6 Isomorphism theorems for vector spaces 100
2.7 Existence and uniqueness of the Jordan canonical form 102
2.8 Cyclic subspaces and rational canonical forms 108
Review Problems (1) 117
3 Applications of the Jordan canonical form 121
3.1 Functions of matrices 121
3.2 Power stability, convergence, and boundedness of matrices 127
$3.3 e^{A t}$ and stability of certain systems of ordinary differential equations 132
4 Inner product spaces 139
4.1 Inner product 139
4.2 Explanation of the G-S process in standard Euclidean space 144
4.3 An example of the $\mathrm{G}-\mathrm{S}$ process 144
4.4 QR factorization 144
4.5 An example of QR factorization 145
4.6 The best fit line 148
4.7 Geometric interpretation of the determinant (second encounter) 149
4.8 Special transformations in IPS 156
4.9 Symmetric bilinear, Hermitian, and quadratic forms 161
4.10 Max-min characterizations of eigenvalues 164
4.11 Positive definite operators and matrices 173
4.12 Inequalities for traces 177
4.13 Singular value decomposition 181
4.14 Majorization 185
4.15 Characterizations of singular values 190
4.16 Moore-Penrose generalized inverse 198
5 Perron-Frobenius theorem 207
5.1 Perron-Frobenius theorem 207
5.2 Irreducible matrices 215
5.3 Recurrence equation with nonnegative coefficients 217
6 Tensor products 221
6.1 Introduction 221
6.2 Tensor product of two vector spaces 221
6.3 Tensor product of linear operators and the Kronecker product 224
6.4 Tensor product of many vector spaces 226
6.5 Examples and results for 3 -tensors 229
Review Problems (2) 235
Challenging Problems 245
Appendices 247
A Sets and mappings 249
B Basic facts in analysis and topology 253
C Basic facts in graph theory 257
D Basic facts in abstract algebra 261
E Complex numbers 273
F Differential equations 277
G Basic notions of matrices 279
Bibliography 281
Index 283

