Evolution, Games and Learning

Models for Adaptation in Machines and Nature

Proceedings of the Fifth Annual International Conference of the Center for Nonlinear Studies
Los Alamos, NM 87545, USA, May 20-24, 1985

Editors:
Doyne Farmer
Alan Lapedes
Norman Packard
Burton Wendroff
Los Alamos National Laboratory
Los Alamos, NM 87545, USA

NORTH-HOLLAND
Amsterdam · Oxford · New York · Tokyo
CONTENTS


J.D. Farmer and N.H. Packard vii

Contents xiii

In memoriam of Stan Ulam – The barrier of meaning

G.-C. Rota 1

Some elementary attempts at numerical modeling of problems concerning rates of evolutionary processes

S. Ulam and R. Schrandt 4

(Neo)-Darwinism

I.J. Good 13

Diversity trends within a model taxonomic hierarchy

J.W. Valentine and T.D. Walker 31

Evolutionary game theory

J. Maynard Smith 43

Autocatalytic replication of polymers

J.D. Farmer, S.A. Kauffman and N.H. Packard 50

Adaptive automata based on Darwinian selection

S.A. Kauffman and R.G. Smith 68

Computing the theory of evolution

M.M. Rizki and M. Conrad 83

Dynamics of molecular evolution

P. Schuster 100

Studying artificial life with cellular automata

C.G. Langton 120

Nonlinear dynamics of pattern formation and pattern recognition in the rabbit olfactory bulb

B. Baird 150

Random behaviour, amplification processes and number of participants: how they contribute to the foraging properties of ants

J.L. Deneubourg, S. Aron, S. Goss, J.M. Pasteels and G. Duerinck 176

The immune system, adaptation, and machine learning

J.D. Farmer, N.H. Packard and A.S. Perelson 187

Intraneuronal dynamics as a substrate for evolutionary learning

K.G. Kirby and M. Conrad 205

Neural network models of learning and adaptation

J.S. Denker 216
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A teachable neural network based on an unorthodox neuron</td>
<td>G.W. Hoffmann, M.W. Benson, G.M. Bree and P.E. Kinahan</td>
<td>233</td>
</tr>
<tr>
<td>A self-optimizing, nonsymmetrical neural net for content addressable</td>
<td>A. Lapedes and R. Farber</td>
<td>247</td>
</tr>
<tr>
<td>Machine learning using a higher order correlation network</td>
<td>J.H. Holland</td>
<td>307</td>
</tr>
<tr>
<td>Psychological concepts in a parallel system</td>
<td>J.A. Anderson and G.L. Murphy</td>
<td>318</td>
</tr>
<tr>
<td>Rational deescalation</td>
<td>S.J. Brams and D.M. Kilgour</td>
<td>337</td>
</tr>
<tr>
<td>Computer learning of parlor games</td>
<td>M. Davis</td>
<td>351</td>
</tr>
<tr>
<td>Algorithmic strategies for improving the performance of game-playing</td>
<td>P.W. Frey</td>
<td>355</td>
</tr>
<tr>
<td>programs</td>
<td>J. Mycielski</td>
<td>366</td>
</tr>
<tr>
<td>Complexity and adaptation</td>
<td>B.A. Huberman and T. Hogg</td>
<td>376</td>
</tr>
<tr>
<td>Approaches to complexity engineering</td>
<td>S. Wolfram</td>
<td>385</td>
</tr>
<tr>
<td>List of contributors</td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>Analytic subject index</td>
<td></td>
<td>401</td>
</tr>
</tbody>
</table>