The views expressed and the information, materials, processes and techniques described in the papers included in these Proceedings represent the views and developments of the individual authors and/or the companies or organizations indicated. Neither the Aluminum Association nor the Aluminum Extruders Council endorses the views expressed or the materials, processes and techniques described in any of the papers. Nor does the Aluminum Association or the Aluminum Extruders Council make any representations as to the accuracy of any of the information set forth in the individual papers.

Accordingly, the Aluminum Association and the Aluminum Extruders Council assume no responsibility or liability for the use of any information, materials, processes or techniques described. No warranties, expressed or implied, by the Aluminum Association or the Aluminum Extruders Council accompany any information included in the papers published in these Proceedings.

The nature of these proceedings and the submission process for the individual papers preclude the Aluminum Association and the Aluminum Extruders Council, Inc. from making any representations, warranties or guarantees as to the compliance of these papers with the copyright laws of the United States.
CONTENTS

VOLUME I

BILLET & EXTRUSION TECHNOLOGY AND EXTRUSION DIES

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET '84 Overview</td>
<td>1</td>
</tr>
<tr>
<td>Robert I. Werner</td>
<td></td>
</tr>
<tr>
<td>R.D. Werner Co., Inc.</td>
<td></td>
</tr>
<tr>
<td>BILLET & EXTRUSION TECHNOLOGY</td>
<td></td>
</tr>
<tr>
<td>6000 SERIES ALLOYS TECHNOLOGY & FRACTURE TOUGHNESS</td>
<td></td>
</tr>
<tr>
<td>Rationalization of Structural Aluminum Magnesium-Silicide Extrusion Alloys</td>
<td>7</td>
</tr>
<tr>
<td>W.G. Barry</td>
<td></td>
</tr>
<tr>
<td>Alcan International Ltd.</td>
<td></td>
</tr>
<tr>
<td>Medium Strength AlMgSi Alloys for Structural Applications</td>
<td>17</td>
</tr>
<tr>
<td>P. Schwellingyer</td>
<td></td>
</tr>
<tr>
<td>H. Zoller</td>
<td></td>
</tr>
<tr>
<td>A. Maitland</td>
<td></td>
</tr>
<tr>
<td>Swiss Aluminium Ltd.</td>
<td></td>
</tr>
<tr>
<td>Correlation of Microstructure in 6xxx Extrusion Alloys with Process Variables and Properties</td>
<td>21</td>
</tr>
<tr>
<td>Philip R. Sperry</td>
<td></td>
</tr>
<tr>
<td>Consolidated Aluminum Corp.</td>
<td></td>
</tr>
<tr>
<td>The Effect of Composition and Homogenization Treatment on Extrudability of AlMgSi Alloys</td>
<td>31</td>
</tr>
<tr>
<td>Oddvin Reiso</td>
<td></td>
</tr>
<tr>
<td>Ardal og Sunndal Verk a.s.</td>
<td></td>
</tr>
<tr>
<td>Correlation Between Properties of Extrusion Billets, Extrudability and Extrusion Quality</td>
<td>41</td>
</tr>
<tr>
<td>Johann Langerweger</td>
<td></td>
</tr>
<tr>
<td>Profiliex AG</td>
<td></td>
</tr>
<tr>
<td>Notch Sensitivity in Wrought AlMgSi Alloys</td>
<td>47</td>
</tr>
<tr>
<td>Dr. Gunther Scharf</td>
<td></td>
</tr>
<tr>
<td>Dr. Barbara Grzembab</td>
<td></td>
</tr>
<tr>
<td>Vereinigte Aluminium-Werke Aktiengesellschaft</td>
<td></td>
</tr>
<tr>
<td>The Influence of Silicon Content and Copper, Iron and Manganese Additions on the Relationship Between Structure and Toughness in Aluminum-Magnesium-Silicon Alloys</td>
<td>53</td>
</tr>
<tr>
<td>D.W. Evans</td>
<td></td>
</tr>
<tr>
<td>J. Aucote</td>
<td></td>
</tr>
<tr>
<td>Coventry Polytechnic</td>
<td></td>
</tr>
<tr>
<td>Combination Effect of Mn and Zr Additions on the Properties of AlMgSi Alloys</td>
<td>63</td>
</tr>
<tr>
<td>Koichi Ohori</td>
<td></td>
</tr>
<tr>
<td>Yo Takeuchi</td>
<td></td>
</tr>
<tr>
<td>Harutoshi Matsuyama</td>
<td></td>
</tr>
<tr>
<td>Mitsubishi Aluminum Co., Ltd.</td>
<td></td>
</tr>
<tr>
<td>Properties of 6106 and 6005A Extrusion Alloys</td>
<td></td>
</tr>
<tr>
<td>Alexandre Annenkoff</td>
<td></td>
</tr>
<tr>
<td>Daniel Marchive</td>
<td></td>
</tr>
<tr>
<td>Cegedur Pechiney</td>
<td></td>
</tr>
<tr>
<td>Recent Developments in Intermediate and High Strength 6xxx Series Alloys</td>
<td>75</td>
</tr>
<tr>
<td>Viola R. Walters</td>
<td></td>
</tr>
<tr>
<td>Edmund C. Franz</td>
<td></td>
</tr>
<tr>
<td>Aluminum Company of America/Edmund Franz Metallurgical Consultant</td>
<td></td>
</tr>
<tr>
<td>Press Quenching of Aluminum Alloys</td>
<td>81</td>
</tr>
<tr>
<td>Robert W. Hains</td>
<td></td>
</tr>
<tr>
<td>Alcan Canada Products Ltd.</td>
<td></td>
</tr>
</tbody>
</table>
Precision and Accuracy of Several Hardness and Tension Test Methods
Robert I. Werner
R. D. Werner Co. Inc.

METALLURGICAL TECHNOLOGY

Modeling of the Aluminum Forward Extrusion Process
Auvo I. Kemppinen
Formerly with Consolidated Aluminum

Temperature Changes in the Extrusion of Aluminum Alloys
A. F. Castle
Service Extrusion Consultants

Metallurgical Aspects of Direct and Indirect Extrusion
Terry Sheppard
Royal School of Mines

A New AlZnMg Extrusion Alloy with Improved Corrosion Resistance
G. Hörligl
H. Bichsel
H. Zoller
Swiss Aluminium Ltd.

Aluminum Extrusion Alloy 7129 Properties and Characteristics
Gary Navrotski
H. E. Oliver
Reynolds Metals Co.

Design of 7029 for Bright Finish Applications
Gary Navrotski
Reynolds Metals Co.

PROCESS TECHNOLOGY

Remelt Furnace Burner Evaluation
John A. Passeri
Reynolds Metals Co.

Induction Heating of Light Metal Logs
Hans Troger
Otto Junker GmbH

A Mathematical Model of an Extrusion Preheater
Ampere A. Tseng
John J. Mills
Stephen H. Maslen
Martin Marietta Laboratories

Comparing the Extrudability of Conventional and Air-Slip® Cast 6xxx Alloy Billet
J.P. Faunce
J.M. Watts
Martin Marietta Laboratories

Technology for the Production of Insulated Extrusion Profiles for the Building Industry
Walter Hueck
Eduard Hueck

The Treatment and Disposal of Spent Die Etch Solution
David A. Landau
Turner Engineering Co., Inc.

Monitoring of Heat Treatment and Spray Quenching Processes by Computer
Eleanor E. Croze
James A. Scott
Aluminum Company of America

Future Aerospace Needs for Aluminum Hard-Alloy Extrusions
R.V. Carter
W.E. Quist
Boeing Commercial Airplane Co.

EXTRUSION DIES

DIE PREPARATION, FIXED DUMMY & NITROGEN

Automatic Die Polishing
Thomas Kohut
Extrude Hone Corp.
Material Flow at Die. ... 203
Henry Valberg
A.W. Hensen
J.O. Loland
SINTEF

Fixed Dummy Block: Use—Design—Efficiency ... 209
W. Wuermeling
CLECIM

The Effects of Nitrogen—Liquid and Gaseous—on Aluminum Extrusion Productivity .. 211
Thomas J. Ward
James F. Heffron
Air Products and Chemicals, Inc.
Richard M. Kelly
Gary Jones
R. D. Werner Co., Inc.

Extrusion Cooling and Inerting Using Liquid Nitrogen 222
Ronald J. Selines
Carmen Goff
Temroc Metals, Inc.
Patrick Cienciwa
Frank Lauricella
Union Carbide Corp.

TOOL STEEL, STEEL HEAT TREATMENT & SURFACE TREATMENT OF EXTRUSION DIES

State and Development of Tooling Materials ... 227
Kurt E. Haberfellner
Fred M. Schindler
Vereingte Edelstahlwerke

Tool Steel Development for Aluminum Extrusion .. 231
Jan-Ake Gaven
Lars-Ake Norstrom
Uddeholm Tooling

Fluidized Beds for Aluminum Extrusion Die Heat Treating 235
Robert Staffin
Procedyne Corp.

Ionitriding An Established Heat Treat Process to Increase the Life of Aluminum Extrusion Dies 239
Wolfgang Rembges
Graham T. Legge
Midland-Ross Corp.

Tungsten Carbide in Aluminum Extrusion Applications 243
John C. Weinrich
Federal Carbide Co.

Developments in Die Heater Design ... 247
Bryan Emes
Mechatherm Engineering Ltd.

USING COMPUTERS FOR EXTRUSION DIE MANUFACTURING (CAM) AND DIE RECORD KEEPING

Die Storage and Die Record Keeping .. 251
Johnie L. Adams
Magnode Corp.

Computerized Die Record Keeping .. 255
James H. Foy
Foy, Inc.

Establishing the Technical Data of Aluminum Extrusion Die Using Wire E.D.M. ... 259
Noriyasu Ishikawa
Mitsubishi International Corp.

High Technology Extrusion Die Manufacturing .. 263
Russell N. McWilliams
McWilliams Machinery Sales, Inc.

Computerized Numerical Control Manufacturing of Extrusion Tools 267
Luis E. Bello
Garbell Tool & Die Co., Inc.
Modern European Die Making
Roger E. Flory
Service Aluminum Co., Ltd.

*Engineering Computer System from Customer to Extrusion Tool
Gene Gambill
Martin Marietta Corp.

Experience Using Liquid Nitrogen for Die Cooling
Howard Brodbeck
MG Industries

*See Volume II, Pages 65 to 75.