Contents

1 Introduction to Single Charge Tunneling
by M. H. Devoret and H. Grabert
1. Basic ingredients of single charge tunneling phenomena . 1
2. Single current biased junction . 4
3. Single island circuits . 10
4. Circuits with several islands . 15
5. Conclusions . 16
References . 18

2 Charge Tunneling Rates in Ultrasmall Junctions
by G.-L. Ingold and Yu. V. Nazarov
1. Introduction . 21
1.1. Ultrasmall tunnel junctions . 21
1.2. Voltage-biased tunnel junction . 22
1.3. Charging energy considerations . 23
1.4. Local and global view of a single tunnel junction . 24
2. Description of the environment . 25
2.1. Classical charge relaxation . 25
2.2. Quantum mechanics of an LC-circuit . 26
2.3. Hamiltonian of the environment . 28
3. Electron tunneling rates for single tunnel junctions . 30
3.1. Tunneling Hamiltonian . 30
3.2. Calculation of tunneling rates . 31
3.3. Phase-phase correlation function and environmental impedance . 36
3.4. General properties of $P(E)$. 37
3.5. General properties of current-voltage characteristics . 39
3.6. Low impedance environment . 40
3.7. High impedance environment . 41
4. Examples of electromagnetic environments . 42
4.1. Coupling to a single mode . 42
4.2. Ohmic impedance . 47
4.3. A mode with a finite quality factor . 49
4.4. Description of transmission lines . 51
4.5. LC transmission line . 53
4.6. RC transmission line . 54
5. Tunneling rates in Josephson junctions 56
 5.1. Introduction .. 56
 5.2. Tunneling of Cooper pairs ... 57
 5.3. Charge-phase duality and incoherent tunneling of the phase 60
 5.4. Tunneling of quasiparticles .. 61
6. Double junction and single electron transistor 65
 6.1. Island charge .. 65
 6.2. Network analysis ... 68
 6.3. Tunneling rates in a double junction system 72
 6.4. Double junction in a low impedance environment 73
 6.5. Double junction in a high impedance environment 75
 6.6. Current-voltage characteristics of a double junction 77
 6.7. Coulomb staircase ... 80
 6.8. SET-transistor and SET-electrometer 83
 6.9. Other multijunction circuits .. 86
A. Microscopic foundation .. 91
 A.1. Introduction .. 91
 A.2. General problem .. 92
 A.3. Time of tunneling ... 97
 A.4. One-photon processes: anomalies and fingerprints 98
 A.5. Diffusive anomalies .. 99
 A.6. Field moves faster than the electrons 102
 A.7. Junction-localized oscillations 104
 A.8. A gateway into networks .. 105
References .. 106

3 Transferring Electrons One By One
by D. ESTEVE 109
1. Introduction ... 109
2. Basic concepts of small junction circuits 110
 2.1. Electrons and electronics .. 110
 2.2. Charge configurations .. 111
 2.3. Tunneling out of an unstable configuration 113
 2.4. Co-tunneling out of a locally stable configuration 115
 2.5. Coexistence of tunneling and co-tunneling 116
3. Single electron box ... 117
 3.1. Average charge in the single electron box 117
 3.2. Measurement of the junction charge (Q) 118
 3.3. Superconducting case .. 122
4. Single electron turnstile ... 122
 4.1. Basic principles of the controlled transfer of single electrons 122
 4.2. The trap: an irreversible single electron box 123
 4.3. From the trap to the turnstile 124
 4.4. Experimental results .. 125
 4.5. Transfer accuracy .. 126
<table>
<thead>
<tr>
<th>5. Single electron pump</th>
<th>127</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1. The principle of the pump: two coupled electron boxes</td>
<td>127</td>
</tr>
<tr>
<td>5.2. A pumping cycle</td>
<td>128</td>
</tr>
<tr>
<td>5.3. Experimental observation of single electron pumping</td>
<td>129</td>
</tr>
<tr>
<td>5.4. Transfer accuracy</td>
<td>131</td>
</tr>
<tr>
<td>6. Is metrological accuracy achievable?</td>
<td>132</td>
</tr>
<tr>
<td>6.1. Metrological applications</td>
<td>132</td>
</tr>
<tr>
<td>6.2. Improving the accuracy of charge transferring devices</td>
<td>133</td>
</tr>
<tr>
<td>7. Conclusion</td>
<td>136</td>
</tr>
<tr>
<td>References</td>
<td>137</td>
</tr>
</tbody>
</table>

4 Josephson Effect in Low-Capacitance Tunnel Junctions
by M. Tinkham

1. Introduction | 139 |
2. Classical Josephson junctions | 140 |
| 2.1. The RCSJ model of a Josephson junction | 140 |
| 2.2. Effect of thermal fluctuations | 141 |
| 2.3. Effect of lead impedance | 144 |
| 2.4. The phase diffusion branch | 150 |
| 2.5. Recapitulation of classical regime | 152 |
3. Quantum effects in Josephson junctions | 153 |
| 3.1. Introduction | 153 |
| 3.2. The isolated junction | 155 |
| 3.3. Estimation of the critical current | 159 |
| 3.4. Estimation of R_o | 162 |
| References | 165 |

5 Coulomb-Blockade Oscillations in Semiconductor Nanostructures
by H. van Houten, C. W. J. Beenakker, and A. A. M. Staring

1. Introduction | 167 |
| 1.1. Preface | 167 |
| 1.2. Basic properties of semiconductor nanostructures | 171 |
2. Theory of Coulomb-blockade oscillations | 173 |
| 2.1. Periodicity of the oscillations | 174 |
| 2.2. Amplitude and lineshape | 178 |
3. Experiments on Coulomb-blockade oscillations | 185 |
| 3.1. Quantum dots | 185 |
| 3.2. Disordered quantum wires | 187 |
| 3.3. Relation to earlier work on disordered quantum wires | 190 |
4. Quantum Hall effect regime | 192 |
| 4.1. The Aharonov-Bohm effect in a quantum dot | 192 |
| 4.2. Coulomb blockade of the Aharonov-Bohm effect | 200 |
| 4.3. Experiments on quantum dots | 203 |
| 4.4. Experiments on disordered quantum wires | 206 |
A. Conductance of a quantum dot coupled to two electron reservoirs | 208 |
| References | 212 |
Contents

6 Macroscopic Quantum Tunneling of Charge and Co-Tunneling
by D. V. Averin and Yu. V. Nazarov 217
1. Introduction .. 217
2. Inelastic q-mqt 221
 2.1. Inelastic q-mqt in the double junction system 221
 2.2. Multijunction circuits 224
 2.3. Experimental observation of inelastic q-mqt 227
3. Elastic q-mqt and virtual electron diffusion 230
4. Transport of electron-hole pairs in coupled arrays of small tunnel junctions 238
 4.1. General picture of electron-hole transport 238
 4.2. Three-junction arrays 240
 4.3. Multijunction arrays 243
5. Unsolved problems and perspectives 244
References .. 246

7 One-Dimensional Arrays of Small Tunnel Junctions
by P. Delsing 249
1. Introduction .. 249
2. Theoretical background 250
3. Experiments .. 254
 3.1. General properties, I-V curves 254
 3.2. Time correlation of tunnel events 258
 3.3. Space correlation of tunnel events 263
 3.4. An R-SET transistor using an array as gate resistor 265
 3.5. Decoupling of the electromagnetic environment 268
4. Discussion .. 269
 4.1. Self correlation 269
 4.2. Array turnstiles 271
 4.3. Coupled arrays 271
5. Conclusions .. 272
References .. 273

8 Single Charges in 2-Dimensional Junction Arrays
by J. E. Mooij and G. SchöN 275
1. Introduction .. 275
2. Charges in junction arrays 276
 2.1. Normal state 276
 2.2. Two-dimensional phase transition 279
 2.3. Simulations of single electron tunneling in normal junction arrays 281
 2.4. Influence of quasiparticle tunneling on the charge KTB transition 282
 2.5. Capacitances in real junction systems 283
 2.6. Charge transition in the superconducting state 285
3. Vortices in 2D junction arrays 286
4. Charge-vortex duality 288
 4.1. The coupled-Coulomb-gas description 289
 4.2. The phase transitions in the junction array 292
5. Quantum vortices
5.1. The vortex mass
5.2. The Aharonov-Casher effect
5.3. Forces acting on vortices
5.4. Dissipation by quasiparticle tunneling
5.5. Experimental observation of ballistic vortices

6. Charge dynamics
A. Arrays of normal junctions with arbitrary strength of the tunneling
B. Effect of an imposed current

References

9 Possible Applications of the Single Charge Tunneling
by D. V. AVERIN and K. K. LIKHAREV
1. Introduction
2. Single electronics: The rules of the game
3. Rules of the game: An illustration
4. DC current standards
5. Supersensitive electrometry
6. Infrared radiation receivers
7. Digital circuits
8. Discussion
 8.1. Background charge relaxation
 8.2. Fabrication technology
 8.3. Design automation
References

Index