Mechanics and Physics of Energy Density

Characterization of material/structure behavior with and without damage

George C. Sih

Institute of Fracture and Solid Mechanics
Lehigh University
Bethlehem, Pennsylvania, USA

and

Emmanuel E. Gdoutos

Department of Civil Engineering
Democritus University of Thrace
Xanthi, Greece
Contents

Series on engineering application of fracture mechanics IX

Foreword XIII

Editors' preface XV

Contributing authors XIX

Photographs XXI

1. Synchronization of thermal and mechanical disturbances in uniaxial specimens / G.C. Sih 1
 1.1 Introductory remarks 1
 1.2 System inhomogeneity and continuity 2
 1.3 Simultaneity of displacement and temperature change 6
 1.4 Isoenergy density theory 9
 1.5 Axisymmetric deformation 15
 1.6 Nonequilibrium response of cylindrical bar specimen in tension 16
 1.7 Conclusions 33
 References 33

2. Thoughts on energy density, fracture and thermal emission / R. Jones, M. Heller and L. Molent 35
 2.1 Introduction 35
 2.2 The F-111 wing pivot fitting 35
 2.3 Damage assessment of an F/A-18 stabilator 39
 2.4 The finite element model 44
 2.5 Thermoelastic evaluation of damage 47
 2.6 Stress fields from temperature measurements 52
 2.7 Conclusions 56
 References 56
 3.1 Introduction 59
 3.2 Experimental consideration 60
 3.3 Fracture analysis 61
 3.4 Strain energy density criterion 64
 3.5 Conclusions 71
References 72

4. Strain energy density criterion applied to characterize damage in metal alloys / V.S. Ivanova 75
 4.1 Introduction 75
 4.2 Strain energy density criterion 75
 4.3 Thermal/mechanical interaction in solids 77
 4.4 Damage characterization 79
 4.5 Transition of micro- to macrodamage 82
 4.6 Concluding remarks 84
References 84

5. Local and global instability in fracture mechanics / A. Carpinteri 87
 5.1 Introduction 87
 5.2 Strain energy density fracture criterion 88
 5.3 Strain-hardening materials 89
 5.4 Strain-softening materials 94
 5.5 Size effects on strength and ductility 103
References 107

 6.1 Introduction 109
 6.2 Description of the method 110
 6.3 Specimen geometry and material properties 112
 6.4 Stress analysis 113
 6.5 Crack growth initiation 118
 6.6 Concluding remarks 119
References 119

7. Extrusion of metal bars through different shape die: damage evaluation by energy density theory / J. Lovas 121
 7.1 Introduction 121
 7.2 Yielding/fracture initiation in plastic deformation 122
 7.3 Nonlinear behavior of extruded metal 124
 7.4 Analysis of failure initiation sites 129
 7.5 Conclusions 135
References 136
Contents

8. Failure of a plate containing a partially bonded rigid fiber inclusion / E.E. Gdoutos and M.A. Kattis 137
 8.1 Introduction 137
 8.2 A partially bonded rigid elliptical inclusion in an infinite plate 138
 8.3 Local stress distribution and stress intensity factors 140
 8.4 Failure initiation from the crack tip or the fiber end 144
 References 147

9. Crack growth in rate sensitive solids / O.A. Bukharin and L.V. Nikitin 149
 9.1 Introductory remarks 149
 9.2 Sih criterion 149
 9.3 Linear viscoelastic solid 150
 9.4 Crack growth in uniformly applied stress field 151
 9.5 Conclusions 153
 References 153

10. Strain energy density criterion applied to mixed-mode cracking dominated by in-plane shear / K.-F. Fischer 155
 10.1 Preliminary remarks 155
 10.2 Sih's strain energy density criterion 157
 10.3 Mixed-mode cracking dominated by in-plane shear 159
 10.4 Discussions 163
 References 164

 11.1 Introduction 167
 11.2 Generation of scalar-valued invariants 167
 11.3 Generation of tensor-valued invariant functions 170
 11.4 Applications 173
 References 178

 12.1 Introduction 179
 12.2 Super-dislocation model 179
 12.3 Plastic zone size 183
 12.4 Dislocation distribution in plastic zone 184
 12.5 Crack in semi-infinite medium 186
 12.6 Relation of volume/surface ratio to plate ligament 187
 12.7 Specimens with different volume/surface ratio 188
 12.8 Conclusions 191
 References 193
13. The effect of microcracks on energy density / N. Laws
 13.1 Introduction 195
 13.2 Microcracked solid with given crack density 196
 13.3 Microcrack nucleation 198
 References 201

14. Convex energy functions for two-sided solution bounds
 in elastomechanics / A.A. Liolios
 14.1 Introduction 203
 14.2 General problem in elastostatics 203
 14.3 Convexity of strain energy and Hilbert space: elastic system 205
 14.4 Global solution bounds 206
 14.5 Local solution bounds 207
 14.6 Concluding remarks 208
 References 209