SOLID STATE ELECTROCHEMISTRY AND ITS APPLICATIONS TO SENSORS AND ELECTRONIC DEVICES

KAZUHIRO SYLVESTER GOTO

Tokyo Institute of Technology, Tokyo 152, Japan

ELSEVIER
CONTENTS

Preface .. page vi

Chapter 1. INTRODUCTION ... 1
1.1 The Scope of the Book
1.2 Importance of Oxides in Metallurgy
1.3 Oxides as Functional Elements in Microelectronics

Chapter 2. IONIC AND ELECTRONIC CONDUCTION OF SOLID AND LIQUID OXIDES AND OF OTHER IONIC COMPOUNDS 12
2.1 Definition of Ionic and Electronic Conductivity
2.2 Relation between the Conductivity and Temperature and Oxygen Pressure
2.3 Classification of Oxides, Nitrides, Sulfides, Sulfates, and Superionic Conductors according to the Conduction Mechanism

Chapter 3. RELATION BETWEEN THE CONDUCTIVITY AND DIFFUSIVITY OF IONS IN OXIDES ... 40
3.1 A General Derivation of Nernst-Einstein Relation
3.2 Validity of Nernst-Einstein Relation in Solid Halides and Solid Oxides
3.3 The Validity in Liquid Halides and Liquid Oxides

Chapter 4. DIFFUSION OF IONS IN SOLID AND LIQUID OXIDES 61
4.1 Relation between Tracer Diffusivity and Interdiffusivity in Oxides
4.2 Diffusivity of Ions in Solid Oxides
4.3 Diffusivities of Ions in Liquid Oxides

Chapter 5. TRANSPORT PROPERTIES IN OXIDES WITH MULTICOMPONENTS 90
5.1 Definition of Transport Coefficients
5.2 Relation between Transport Coefficients and Measurable Physical Properties
5.3 Calculation of Transport Coefficients
5.4 Measurement of Various Transport Properties

Chapter 6. EQUILIBRIUM ELECTROMOTIVE FORCE OF GALVANIC CELLS WITH SOLID ELECTROLYTES OF OXYGEN ANION CONDUCTION 125
6.1 Virtual Cell Reaction and Electromotive Force

6.2 C. Wagner's General Equation of the EMF for Electrolytes of Multi-Charge Carriers

6.3 Galvanic Cells with Solid Electrolytes of Oxygen Anion Conduction for Thermodynamic Studies at High Temperature

Chapter 7. GALVANIC CELLS WITH ELECTROLYTES WITH NON-OXYGEN CONDUCTION 156

7.1 Galvanic Cells with Solid Electrolytes of Cation Conduction

7.2 Galvanic Cells with Solid Electrolytes of Sulfides, Sulfates, and Nitrides

7.3 Electrochemical Knudsen Cell with Solid Electrolyte of AgI

Chapter 8. OVERPOTENTIAL AT INTERFACE BETWEEN A METAL AND AN OXIDE WITH IONIC CONDUCTION 196

8.1 Direct Current Overpotential and Faradaic Impedance Induced by Diffusion or Charge Transfer Reaction

8.2 Determination of Interdiffusivity of Oxygen in Metals

8.3 Use of Solid Electrolytes for Kinetic Studies

Chapter 9. ELECTROCHEMICAL KINETICS AT THE INTERFACE BETWEEN METALS AND LIQUID OXIDES WITH IONIC CONDUCTION 231

9.1 Ionic Theory of Liquid Oxides

9.2 Electrolysis of Liquid Oxides and Nature of Charge Carriers

9.3 Electrode Kinetic Theory on Liquid Oxides/Metal Interface

Chapter 10. INDUSTRIAL APPLICATION OF OXYGEN SENSORS WITH SOLID ELECTROLYTES OF OXYGEN ANION CONDUCTION 266

10.1 Introduction

10.2 Oxygen Analysis in Waste Gases of Boilers and Various Industrial Furnaces

10.3 Total Oxygen Demand in Waste Water and Combustion Control of Gasoline Engines

10.4 Determination of Oxygen Content in Liquid Metals at Plants of Nonferrous Metallurgy

Chapter 11. SOLID-OXIDE OXYGEN SENSORS FOR THE STEELMAKING INDUSTRY 299

11.1 Structure of Commercial Oxygen Sensors

11.2 Change of Oxygen Content in Steel during its Refining

11.3 On-Line Use of Oxygen Sensors

11.4 Oxygen Sensors for Liquid Slags
Chapter 12. VARIOUS CHEMICAL SENSORS WITH SOLID OXIDES ------ 333

12.1 Classification of Sensors
12.2 Gas Sensors with Semiconductor Oxides
12.3 Humidity Sensors with Resistivity Change of Oxides
12.4 Gas Sensors with Metal-Oxide-Semiconductor Transistors

Chapter 13. VARIOUS OXIDES USED FOR ELECTRONIC DEVICES ------ 372

13.1 Perspective View on the Use of Solid Oxides for Electronic Devices
13.2 Fabrication of Thin Films of Solid Oxides
13.3 Applications of Solid State Electrochemistry of Oxides to Various Electronic Devices

Appendix --- 405

(1) Problems for Discussion and Calculation for Chapter 2 to Chapter 13

(2) Table of Standard Free Energy of Reactions Involving Inorganic Compounds as Functions of Temperature

(3) Crystal Structures of Inorganic Compounds

Subject index --- 449