MATERIALS SCIENCE MONOGRAPHS, 47

SURFACE AND NEAR-SURFACE CHEMISTRY OF OXIDE MATERIALS

Edited by

JANUSZ NOWOTNY
Max-Planck-Institut für Festkörperforschung, 7000 Stuttgart 80, F.R.G.

and

LOUIS-CLAUDE DUFOR
Laboratoire de Recherches sur la Réactivité des Solides, 21004 Dijon, France

ELSEVIER
CONTENTS

Preface v
List of Contributors xv

1. THE THEORY OF CERAMIC SURFACES 1
A. M. Stoneham and P.W. Tasker

1.1 Real surfaces and ideal surfaces 1
 1.1.1 Introduction 1
 1.1.2 Theoretical methods 2
 1.1.3 Structure and stability 3
 1.1.4 Surface energy and morphology 5

1.2 Defects on oxide surfaces 6
 1.2.1 Signals versus models 6
 1.2.2 Surface signals and near-surface or bulk signals 6
 1.2.3 Simple intrinsic defects 7
 1.2.4 Intrinsic defects with electronic structure 7
 1.2.4.1 Anion vacancy centers 7
 1.2.4.2 Cation vacancy centers 8
 1.2.4.3 Low coordinated oxygen 9
 1.2.4.4 Surface excitons 9
 1.2.5 Adsorbed species 9
 1.2.5.1 Adsorbed oxygen 9
 1.2.5.2 Adsorbed metal atoms 9
 1.2.6 Hydrogen on oxide surfaces 9
 1.2.7 Near-surface defects 10

1.3 Impurity segregation 10
 1.3.1 Equilibrium surface segregation 10
 1.3.2 Vibrations, structure and entropy 13

1.4 Metal–oxide adhesion 15
 1.4.1 Metal–oxide adhesion: general 15
 1.4.2 Image interactions 17
 1.4.3 Consequences for adhesion 18
 1.4.4 Consequences for other phenomena 20

References 20

2. ELECTRONIC AND GEOMETRIC STRUCTURE OF DEFECTS ON OXIDES
 AND THEIR ROLE IN CHEMISORPTION 23
V. E. Henrich

2.1 Introduction 23

2.2 Experimental techniques used to study surface defects 24
 2.2.1 Low energy electron diffraction (LEED) 24
 2.2.2 Photoelectron spectroscopy 25
 2.2.3 Inverse photoelectron spectroscopy 25
 2.2.4 Electron energy loss spectroscopy 26
 2.2.5 Auger electron spectroscopy 27
 2.2.6 Scanning tunneling microscopy 27

2.3 Geometric structure of oxide surfaces and defects 27
3. SELECTED EXPERIMENTAL METHODS IN THE CHARACTERIZATION
OF OXIDE SURFACES
W. Hirschwald

3.1 Introduction

3.2 General consideration concerning the experimental set-up

3.3 Structure of surfaces
3.3.1 Introduction
3.3.2 Scanning tunneling microscopy (STM)
3.3.3 Field emission and field ion microscopy (FEM, FIM)
3.3.4 Electron microscopies (TEM, SEM)
3.3.5 Low energy electron diffraction (LEED)
3.3.6 Atomic beam scattering and diffraction
3.3.7 Ion scattering
3.3.8 Surface enhanced X-ray absorption fine structure (SEXAFS)
3.3.9 X-ray absorption near-edge structure (XANES)
3.3.10 Surface extended energy loss fine structure (SEELFS)
3.3.11 Angle-resolved photoemission (ARPES)

3.4 Chemical composition of surfaces
3.4.1 Introduction
3.4.2 Photoelectron and Auger electron spectroscopy (PES, AES)
3.4.3 Quantification of XPS and AES
3.4.4 Depth profiling
3.4.5 Radiation damage
3.4.6 Scanning Auger microprobe/microscopy (SAM)
3.4.7 Secondary ion mass spectrometry (SIMS)
 and fast atom bombardment mass spectrometry (FABMS)
3.4.8 Ion scattering spectroscopy (ISS)
3.4.8.1 LEIS
3.4.8.2 HEIS (RBS)

3.5 Energetics of Surfaces
3.5.1 Electrons at surfaces
3.5.1.1 Photoelectron spectroscopy
3.5.1.2 Electron energy loss spectroscopy
3.5.1.3 Tunneling spectroscopy
3.5.2 Vibrations at surfaces
3.5.2.1 Inelastic electron tunneling spectroscopy (IETS)
3.5.2.2 High resolution electron energy loss spectroscopy (HREELS)

3.6. Concluding remarks

References
4. SURFACE REACTIVITY OF OXIDE MATERIALS
IN OXIDATION-REDUCTION ENVIRONMENT

T. Seiyama

4.1 Introduction

4.2 The stability of metal oxides under the ambient atmosphere
4.2.1 Thermodynamic stability of single metal oxides
4.2.2 Thermodynamic stability of mixed metal oxides
4.2.3 Anomalous redox properties of metal oxide surfaces

4.3 Reduction-oxidation behaviour of metal oxides
and their surface structures
4.3.1 Adsorption of hydrogen on oxide surfaces
4.3.2 Reduction behaviour of metal oxide surfaces
4.3.3 Effect of surface structure at well-defined

crystallographic planes on the reactivity of oxides
4.3.3.1 The difference in adsorption property and reactivity
among crystallographic planes in ZnO single crystal
4.3.3.2 Adsorption on TiO$_2$ (110) surface
4.3.3.3 Shape dependent reactivity of MoO$_3$ in oxide catalysts
4.3.4 Interaction of metals or metal oxides with support oxides

4.4 Examples of reduction-oxidation properties of some oxide systems
4.4.1 Correlation of redox reaction and crystallographic
shear plane in WO$_3$ - type oxides
4.4.2 Modification of redox reactivity in mixed oxide systems
4.4.2.1 Change of surface structure of Cu-Mo oxide
4.4.2.2 Oxygen-sorptive properties of perovskite-type oxides
4.4.3 Redox properties of heteropoly compounds
in oxidation catalysis
4.4.4 Changes in surface composition of mixed oxides
4.4.4.1 Mixed oxide system Fe$_2$O$_3$-Sb$_2$O$_4$
4.4.4.2 Perovskite-type oxide

References

5. METAL OXIDE OVERLAYERS AND OXYGEN INDUCED CHEMICAL REACTIVITY
STUDIED BY PHOTOELECTRON SPECTROSCOPY

M.W. Roberts

5.1 Introduction

5.2 The photoelectron spectroscopic approach
5.3 Oxygen chemisorption at metal surfaces
5.3.1 Nickel
5.3.2 Titanium
5.3.3 Bismuth
5.3.4 Copper
5.3.5 Manganese
5.3.6 Iron
5.3.7 Germanium
5.3.8 Aluminium
5.4 Activation of molecules by surface oxygen
and oxide overlayers at metal surfaces
5.4.1 Oxidation induced chemisorptive replacement reactions
5.4.2 Surface oxide - water vapour interaction
5.5 Surface oxygen transients in metal oxidation
and heterogeneous catalysis
5.6 Concluding remarks

References

6. SURFACE SEGREGATION IN METAL OXIDES

P. Wynblatt and R.C. Mc Cune

6.1 Introduction
6.2 Concepts for the interpretation of segregation phenomena 247
 6.2.1 The Gibbsian framework 248
 6.2.2 Regular solution models 250
 6.2.2.1 Application to oxides with isovalent solutes 250
 6.2.2.2 Application to oxide solutions with aliovalent solutes 254
 6.2.2.3 Coupling of elastic and electrostatic interactions 258
 6.3 Experimental considerations in the study of solute segregation
 at surfaces 259
 6.3.1 Oxide solid solutions 259
 6.3.2 Achieving equilibrium 260
 6.3.2.1 Atmosphere and volatilization 260
 6.3.2.2 Segregation kinetics 261
 6.3.3 Measurement of solute segregation 262
 6.3.3.1 Indirect assessment of surface solute enrichment 262
 6.3.3.2 Surface spectroscopic techniques 263
 6.4 Current state of understanding 267
 6.4.1 Isovalent solute systems 269
 6.4.2 Allovalent solute segregation 270
 6.4.3 Other systems 273
 6.4.4 Concluding remarks 274
 References 275

7. WORK FUNCTION OF OXIDE CERAMIC MATERIALS 281
 J. Nowotny and M. Sloma
 7.1 Introduction 281
 7.2 Definition of the work function 282
 7.3 The dynamic condenser method 285
 7.3.1 The vibrating system 289
 7.3.2 The reference level 291
 7.4 Oxidation of metals 292
 7.4.1 Effect of crystallographic orientation
 on surface reactivity 292
 7.4.2 Oxidation mechanism 294
 7.5 The metal oxide-oxygen system 298
 7.5.1 Chemisorption equilibria 300
 7.5.2 Near-surface equilibria 304
 7.5.3 Defect equilibria 309
 7.5.3.1 Undoped and Y-doped (stabilized) ZrO2 310
 7.5.3.2 Undoped and Cr-doped nickel oxide 314
 7.6 Phase transitions in oxide systems 318
 7.7 Solid state reactions 321
 7.8 Segregation in oxide crystals 323
 7.9 Work function of oxide catalysts 327
 7.9.1 Work function of catalysts in reactive atmospheres 328
 7.9.2 Electronic factor in catalysis 332
 7.10 Conclusions 336
 References 337

8. PHOTOEFFECTS ON METAL OXIDE POWDERS 345
 J. Cunningham
 8.1 Introduction 345
 8.2 Surface sensitive features in the electronic spectroscopy
 of undoped metal oxides 346
 8.2.1 Pre-1981 concepts 346
 8.2.2 Recent developments in surface sensitive
 electronic spectroscopy of metal oxides in the UV/visible 355
 8.2.2.1 Alkaline earth oxides 356
 8.2.2.2 Alternative views as to the influence
 of surface upon excitons 361
8.2.2.3 Titanium oxide 364
8.3 Interaction of probe molecules with metal oxides in ground and electronically excited states 367
8.3.1 Mechanistic concepts 367
 8.3.1.1 Metal oxide-adsorbate interactions in ground electronic states 367
 8.3.1.2 Metal oxide-adsorbate interactions in an electronically excited state 370
 8.3.1.3 Photophysical, photochemical and photocatalytic processes 374
8.3.2 Adsorbate-initiated photoeffects: recent developments 380
 8.3.2.1 Photophysical processes 380
 8.3.2.2 Photochemical (and associated photophysical) processes 384
8.3.3 Adsorbent-initiated photoeffects 387
 8.3.3.1 Photophysical effects 388
 8.3.3.2 Energy-transfer aspects 392
 8.3.3.3 Photochemical processes 393
References 405

9. THE ROLE OF THE SURFACE ON BULK PHYSICAL PROPERTIES OF GLASSES 413
A.A. Kruger
 9.1 Introduction 413
 9.2 Composition and structure 414
 9.3 Surface structure 417
 9.4 Leaching and corrosion 427
 9.5 Strength 431
 9.6 Conclusion 435
References 436

10. SEGREGATION IN OXIDE SURFACES; SOLID ELECTROLYTES AND MIXED CONDUCTORS 449
A.J. Burggraaf and A.J.A. Winnubst
 10.1 Introduction 449
 10.1.1 Modes of compositional changes near interfaces 450
 10.2 Experimental methods and limitations 451
 10.3 Driving forces and important effects and aspects 454
 10.3.1 Theories and models 454
 10.3.1.1 Surface tension 455
 10.3.1.2 Strain relaxation 456
 10.3.1.3 Electrostatic potential and charge compensation 457
 10.3.2.1 Effects of gas phase composition and surface states 460
 10.3.2.2 Effects of strain energy 462
 10.3.2.3 Effects of cooling rates 462
 10.3.2.4 Grain boundary versus surface segregation 462
 10.4 Chemical composition and some properties of typical compounds 463
 10.4.1 I onically conducting oxides 463
 10.4.2 Semi and mixed conducting oxides 467
 10.4.3 Electrically insulating oxides 471
 10.5 General segregation patterns and conclusions 473
References 474

11. GRAIN SIZE AND GRAIN BOUNDARY EFFECTS IN PASSIVE ELECTRONIC COMPONENTS 479
D. Hennings
 11.1 Introduction 479
 11.2 Dielectric barium titanate ceramics 481
 11.2.1 Ferroelectric domains in BaTiO₃ ceramics 482
11.2.2 The grain size dependence of the permittivity 485
11.2.3 Dielectric materials with core-shell structure 486
11.3 Semiconducting BaTiO₃ and SrTiO₃ 487
11.3.1 The chemistry of point defects in BaTiO₃ 487
11.3.2 Diffusion of lattice defects in BaTiO₃ 491
11.4 Nonlinear resistors and barrier layer capacitors 493
11.4.1 PTC thermistors 495
11.4.2 SrTiO₃ varistors 497
11.4.3 SrTiO₃ boundary layer capacitors 498
11.5 Summary 502
References 503

12. REACTIONS AT PHASE BOUNDARIES DURING METAL/CERAMIC BONDING 507
H.J. de Bruin

12.1 Introduction 507
12.2 Methods for bonding metals to ceramics 512
12.2.1 Special brazing alloys 512
12.2.2 Metalizing a ceramic surface 512
12.2.3 Special glasses 513
12.2.4 Reaction bonding 514
12.3 Phase relations in metal ceramic bonding processes 515
12.4 Mechanism for reaction bonding of oxide ceramics 519
12.5 Conclusion 523
References 524

13. OXIDE SURFACES IN SOLUTION 527
R.L. Segall, R.St.C. Smart and P.S. Turner

13.1 Introduction 527
13.2 The role of the solid 533
13.2.1 Ionic oxides 535
13.2.1.1 The fundamental characteristics of ionic oxide dissolution 535
13.2.1.2 Early work on advanced stage of dissolution 535
13.2.1.3 The initial stage of dissolution 536
13.2.1.4 Relevant oxide/gas reactions 536
13.2.1.5 Initial dissolution kinetics of MgO 537
13.2.1.6 Advanced dissolution kinetics of MgO 539
13.2.1.7 Results for other ionic oxides 542
13.2.2 Semiconducting oxides 542
13.2.2.1 Classification of semiconducting oxides 542
13.2.2.2 The p-type oxides 543
13.2.2.3 Initial dissolution kinetics of p-type oxides 543
13.2.2.4 Advanced stages of dissolution of p-type oxides 544
13.2.2.5 The n-type oxides 547
13.2.3 Covalent insulating oxides 548
13.3 Theories of oxide dissolution kienetics 549
13.3.1 Diffusion control of ion transfer in ionic oxides (Jaenicke) 550
13.3.2 Ion transfer in ionic crystals (Engell) 551
13.3.3 Ion transfer control in ionic oxides-pH dependence (Vermilyea) 552
13.3.4 Ion transfer in ionic oxides-potential determination (Diggle) 555
13.3.5 The electron-proton theory of potential determination (Gorichev) 556
13.3.6 Irreversible thermodynamics of reaction rate (Prigogine) 558
13.3.7 Semiconductor theory of oxidation and reduction 559
13.4 The role of the solution 560
13.4.1 Concentration of reactants and products 560
13.4.2 pH of the solution 561
13.4.3 Redox potential 563
13.4.4 Complexing agents 564
13.4.5 Surface active agents 566
13.4.6 Temperature 566
13.5 Conclusions 566
13.5.1 Ionic oxides 567
13.5.2 Fast-dissolving semiconducting oxides 568
13.5.3 Slow-dissolving semiconducting oxides 570
13.5.4 Covalent insulating oxides 571
References 571

14. METALS ON OXIDES: FORMATION, CHARACTERIZATION AND PROPERTIES 577
L.C. Dufour and M. Perderau
14.1 Introduction and limitation of the subject 577
14.1.1 Some definitions: from supported metal clusters to thick metallic films 577
14.1.2 Limitations of the present review 579
14.2 Specific techniques to investigate the properties of metals on oxides 580
14.2.1 General problems 581
14.2.2 Some selected examples of methods to study small particles and thin films of metals on oxides 582
14.2.2.1 Large-area techniques 582
14.2.2.2 High spatial resolution techniques 584
14.3 The formation of the metal oxide interface 585
14.3.1 Adsorption-desorption processes at oxide surfaces 587
14.3.2 Surface migration of adsorbed species 588
14.3.3 Nucleation and growth of metals on oxides 588
14.3.3.1 General considerations 588
14.3.3.2 Quality of the metal-oxide interface 590
14.3.3.3 Some selected examples of growth modes 592
14.4 Some physico-chemical properties of metals on oxides 594
14.4.1 Static properties related to size 594
14.4.1.1 Electronic properties of small metallic particles on oxides 594
14.4.1.2 Structural and morphological properties of small particles on oxides 595
14.4.2 Dynamic properties and thermal stability 597
14.5 Conclusion 598
References 601

15. ELECTRONIC STRUCTURE AND TRANSPORT PROPERTIES OF INTERFACES IN METAL OXIDES 611
M.H. Sukkar and H.L. Tuller
15.1 Introduction 611
15.2 Background 612
15.2.1 Transport and bulk defect equilibria in semiconducting metal oxides 612
15.2.1 (i) Intrinsic effects 613
15.2.1 (ii) Extrinsic effects 614
15.2.1 (iii) Oxidation/reduction processes 615
15.2.2 Semiconductor interfaces 617
15.3 Grain boundary phenomena 619
15.3.1 Background 619
15.3.2 Grain boundary junction electronic structure 620
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.3.3</td>
<td>Electronic structure</td>
<td>622</td>
</tr>
<tr>
<td>15.4</td>
<td>Grain boundary controlled ceramic devices</td>
<td>623</td>
</tr>
<tr>
<td>15.4.1</td>
<td>ZnO varistors</td>
<td>623</td>
</tr>
<tr>
<td>15.4.2</td>
<td>Electronic transport</td>
<td>626</td>
</tr>
<tr>
<td>15.4.3</td>
<td>The nature of ZnO varistor grain boundaries</td>
<td>629</td>
</tr>
<tr>
<td>15.4.4</td>
<td>Defect structure of ZnO varistor materials</td>
<td>631</td>
</tr>
<tr>
<td>15.5</td>
<td>BaTiO$_3$ PTC thermistors</td>
<td>638</td>
</tr>
<tr>
<td>15.5.1</td>
<td>PTC device chemistry</td>
<td>641</td>
</tr>
<tr>
<td>15.5.2</td>
<td>Preferential grain boundary oxidation</td>
<td>642</td>
</tr>
<tr>
<td>15.6</td>
<td>Ferrites</td>
<td>643</td>
</tr>
<tr>
<td>15.6.1</td>
<td>Introduction</td>
<td>643</td>
</tr>
<tr>
<td>15.6.2</td>
<td>Grain boundary effect in magnetic ferrites</td>
<td>643</td>
</tr>
<tr>
<td>15.6.3</td>
<td>Impurity effects</td>
<td>644</td>
</tr>
<tr>
<td>15.6.4</td>
<td>Grain boundary oxidation</td>
<td>645</td>
</tr>
<tr>
<td>15.7</td>
<td>Metal-metal oxide interfaces</td>
<td>647</td>
</tr>
<tr>
<td>15.7.1</td>
<td>Background</td>
<td>647</td>
</tr>
<tr>
<td>15.7.2</td>
<td>Electronic transport in nonideal Schottky barriers-</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td>interfacial layer and surface state effects</td>
<td></td>
</tr>
<tr>
<td>15.7.3</td>
<td>Literature review</td>
<td>653</td>
</tr>
<tr>
<td>15.7.3.1</td>
<td>ZnO/metal contacts</td>
<td>653</td>
</tr>
<tr>
<td>15.7.3.2</td>
<td>Titanaite/metal contacts</td>
<td>655</td>
</tr>
<tr>
<td>15.7.3.3</td>
<td>Metal-support catalysts</td>
<td>656</td>
</tr>
<tr>
<td>15.8</td>
<td>Summary and conclusion</td>
<td>656</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>657</td>
</tr>
</tbody>
</table>

16.	HIGH T$_c$ OXIDE SUPERCONDUCTORS. POSSIBLE EFFECT OF INTERFACES	669
	J. Nowotny, M. Rekas, D.D. Sarma and W. Weppner	
16.1	Introduction	669
16.2	A short review on structure and composition	670
16.3	Phase relations and non-stoichiometry of high T$_c$ oxide	676
	superconductors	
16.3.1	Conditions of sintering	780
16.3.2	Conditions of cooling	681
16.4	Effect of microstructure	682
16.5	Single crystals	685
16.6	Thin films	687
16.7	Surface vs. bulk	688
16.8	Aging	689
16.9	Concluding remarks	690
References		692

Subject Index 701

Formula index 709