PROCEEDINGS

SPE/DOE Seventh Symposium
On Enhanced Oil Recovery

April 22–25, 1990
Tulsa, Oklahoma

Sponsored by the
MID-CONTINENT SECTION
SOCIETY OF PETROLEUM ENGINEERS
and the U.S. DEPARTMENT OF ENERGY
CONTENTS

SPE 18977 Summary Results of CO₂ EOR Field Tests, 1972–1987 11
W.R. Brock and L.A. Bryan, Exxon Co. U.S.A.

SPE 20118 The Ford Geraldine Unit CO₂ Flood: Update 1990 21
K.R. Pittaway and R.J. Rosato, Conoco Inc.

SPE/DOE 20130 Compositional Simulation of the Coyanosa Wolfcamp Field
Gas Cycling Operation 29
J.S. Kim, Mobil E&P U.S. Inc.

SPE/DOE 20176 Viscous Fingering, Gravity Segregation, and Reservoir Heterogeneity in
Miscible Displacements in Vertical Cross Sections 39

SPE/DOE 20177 Analytical Computation of Breakthrough Recovery for CO₂ Floods
in Layered Reservoirs 47
K.K. Pande, Chevron Oil Field Research Co., and F.M. Orr Jr., Stanford U.

SPE/DOE 20178 Sensitivity to Gridding of Miscible Flood Predictions Made With
Upstream Differentiated Simulators 59
F.I. Stalkup, L.L. Lo, and R.H. Dean, ARCO Oil & Gas Co.

SPE/DOE 20179 Dynamic Effective Relative Permeabilities for Crossbedded Flow Units 71
E. Kasap and L.W. Lake, U. of Texas

SPE/DOE 20180 Mathematical Simulation of Phase Behavior of Natural Multicomponent
Systems at High Pressures Using Equation of State 83
A.I. Brusilovsky, Inst. of Oil & Gas Problems, USSR Academy of Sciences

SPE/DOE 20181 The Effect of Solvent Viscosity on Miscible Flooding 95
B.L. O'Steen, Westinghouse Savannah River Co., and E.T.S. Huang, Unocal Corp.

SPE/DOE 20183 Three-Phase Relative Permeability of Water-Wet Berea 109
M.J. Oak, Amoco Production Co.

SPE/DOE 20184 Three-Phase Gas/Oil/Brine Relative Permeabilities Measured Under
Carbon Dioxide Flooding Conditions 121

SPE/DOE 20185 Mobilization of Waterflood Residual Oil by Gas Injection
for Water-Wet Conditions 133
P.E. Oren, U. of New South Wales; J. Billiotte, Ecole des Mines de Paris; and
W.V. Pinczewski, U. of New South Wales

SPE/DOE 20186 Miscible Gas Flood-Induced Wettability Alteration:
Experimental Observations and Oil Recovery Implications 147
S.W. Yeh, R. Ehrlich, and A.S. Emanuel, Chevron Oil Field Research Co.

SPE/DOE 20187 Displacement Characteristics of Nitrogen Flooding vs. Methane
Flooding in Volatile Oil Reservoirs 155
D.M. Boersma and J. Hagoort, Delft U. of Technology

SPE/DOE 20188 Phase Behavior, Fluid Properties, and Displacement Characteristics of
Permian Basin Reservoir Fluid–CO₂ Systems 163
J.L. Creek and J.M. Sheffield, Chevron Oil Field Research Co.

SPE/DOE 20190 A Study of the Mechanisms of Carbon Dioxide Flooding and
Applications to More Efficient EOR Projects 175
S. Haynes Jr. and R.B. Alston, Texaco Inc.

SPE/DOE 20191 The Effect of Microscopic Heterogeneity on CO₂-Foam Mobility:
Part 2—Mechanistic Foam Simulation 185
Research Center, and F.S. Kovarik, U. of Houston

SPE/DOE 20192 Carbon Dioxide Foam With Surfactants Used Below Their Critical
Micelle Concentrations 199
M.I. Kuhlman and A.H. Falls, Shell Development Co.; S.K. Hara, Shell Offshore Inc.;
T.G. Monger, Marathon Oil Co.; and J.K. Borchardt, Shell Development Co.
Foams for Effective Gas Blockage in the Presence of Crude Oil
J.E. Hanssen and M. Dalland, Rogaland Research Inst.

Change in Apparent Viscosity of CO₂-Foam With Rock Permeability
H.O. Lee, J.P. Heller, and A.M.W. Hoefer, New Mexico Petroleum Recovery Research Center

Mathematical Modelling of Foam Flooding

Long-Distance Propagation of Foams
D.A. Hudgins and F.T-H. Chung, NIPER/IITRI

Microvisual and Coreflood Studies of Foam Interactions With a Light Crude Oil

A Semianalytical Thermal Model for Linear Steam Drive
R.J. Gajdica, ARCO Oil & Gas Co., and W.E. Brighn and K. Aziz, Stanford U.

Steam/Foam Pilot Project at Dome-Tumbador, Midway Sunset Field:
Part 2

Effects of Endpoint Saturations and Relative Permeability Models on Predicted Steamflood Performance
M. Kumar and T.N. Do, Chevron Oil Field Research Co.

Steam Circulation in Horizontal Wellbores
D.A. Best and R.P. Lesage, Mobil Oil Canada, and J.E. Arthur, Essien Consulting Engineers

Oil Recovery Mechanisms in Fractured Reservoirs During Steam Injection
J.C. Reis, U. of Texas

New Methodology for the Specification of Solvent Blends for Miscible Enriched Gas Drives
L.R. Sibblad, Z. Novosad, and T.G. Costain, Shell Canada Ltd.

A Theoretical Study of Water-Blocking in Miscible Flooding
T. Mueller, BEB Erdgas & Erdöl GmbH, and L.W. Lake, U. of Texas

Investigation of a Cyclic Countercurrent Light-Oil/CO₂ Immiscible Process
S.K. Hara and P.G. Christman, Shell Development Co.

The Feasibility of Cyclic CO₂ Injection for Light-Oil Recovery

An Improved Viscosity Correlation for CO₂/Reservoir Oil Systems
R.M. Lansangan, New Mexico Petroleum Recovery Research Center; M. Taylor, BP America (Sohio); J.L. Smith, New Mexico Tech; and F.S. Kovarik, U. of Houston

Implications of Water-Alternate-Gas Injection for Profile Control and Injectivity
S.B. Gorell, Shell Development Co.

Placement of Gels in Production Wells
J. Liang, New Mexico Petroleum Recovery Research Center; R.L. Lee, New Mexico Inst. of Mining & Technology; and R.S. Seright, New Mexico Petroleum Recovery Research Center

Effect of High Shear Rate on In-Situ Gelation of a Xanthan/Cr(III) System
F. Jousset, D.W. Green, G.P. Willhite, and C.S. McCool, U. of Kansas Tertiary Oil Recovery Project

Acrylamide-Polymer/Chromium(III)-Carboxylate Gels for Near Wellbore Matrix Treatments
R.D. Sydansk, Marathon Oil Co.
A Mathematical Model of In-Situ Gelation of Polyacrylamide by a Redox Process
B.J. Todd, G.P. Willhite, and D.W. Green, U. of Kansas Tertiary Oil Recovery Project

Studies of the Effects of Crossflow and Initiation Time of a Polymer Gel Treatment on Oil Recovery in a Waterflood Using a Permeability Modification Simulator

The Development of a Probabilistic Physical Model for Foam Generation by Snapoff in Regular Square Grid Network Systems
P. Armitage and R.A. Dawe, Imperial College

Surfactant Flood Process Design for Loudon
J.M. Maerker and W.W. Gale, Exxon Production Research Co.

Second Ripley Surfactant Flood Pilot Test

The Low-Tension Polymer Flood Approach to Cost-Effective Chemical EOR
B. Kalpakci and T.G. Arf, BP Research; J.W. Barker, BP Research Sunbury; A.S. Krupa, BP Research; J.C. Morgan, BP Research Sunbury; and R.D. Neira, BP Research

Imbibition of Surfactant Solutions
P.P.M. Keijzer and A.S. de Vries, Koninklijke/Shell E&P Laboratorium

Use of Mixed Surfactants To Generate Foams for Mobility Control in Chemical Flooding
F.M. Llave and D.K. Olsen, Natl. Inst. for Petroleum & Energy Research

Design of a Novel Flooding System for an Oil-Wet Central Texas Carbonate Reservoir

A Full-Field Numerical Modeling Study for the Ford Geraldine Unit CO₂ Flood
K.H. Lee and M.M. El-Saleh, Conoco Inc.

Reservoir Surveillance Impacts Management of the Judy Creek Hydrocarbon Miscible Flood
D.W.L. Pritchard, D.T. Georgi, P. Hemingson, and T. Okazawa, Esso Resources Canada Ltd.

A Case History of the Hanford San Andres Miscible CO₂ Project
M.B. Merritt and J.F. Groce, Fasken Oil & Ranch Interests

Design, Operation, and Evaluation of a Surfactant/Polymer Field Pilot Test
S.M. Holley and J.L. Cayias, Oryx Energy Co.

A Comparison of 31 Minnelusa Polymer Floods With 24 Minnelusa Waterfloods
S.M. Hockanadel, TIORCO Inc.; M.L. Lunceford, Metfuel Inc.; and C.W. Farmer, Wyoming Oil & Gas Commission

Polymer Retention in Porous Media
C. Huh, E.A. Lange, and W.J. Cannella, Exxon Production Research Co.

Co-Deployment of Surfactant/Polymer and Miscible-Gas-Enhanced Oil Recovery Processes: A Simulation Study
J.W. Barker, BP Research Centre
<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPE/DOE 20237</td>
<td>Thermal Stability of Scleroglucan at Realistic Reservoir Conditions</td>
<td>B. Kalpakci, Y.T. Jeans, N.F. Magri, and J.P. Padolewski, BP Research</td>
</tr>
<tr>
<td>SPE/DOE 20241</td>
<td>Experimental Validation of a New Method for Optimizing Miscible Flooding of Stratified Reservoirs</td>
<td>P. Ingsøy, Rogaland Research Inst., and S.M. Skjaeveland, Rogaland U.</td>
</tr>
<tr>
<td>SPE/DOE 20243</td>
<td>Factors Governing Formation Damage andInjectivity of Polymer</td>
<td>A.J.P. Fletcher, S.P. Lamb, and P.J. Clifford, BP Intl.</td>
</tr>
<tr>
<td>SPE/DOE 20244</td>
<td>Oil Recovery From Fractured Reservoirs Through Imbibition by Water and Polymer Flooding</td>
<td>S.G. Ghedan, U. of Baghdad, and F.H. Poettmann, Colorado School of Mines</td>
</tr>
<tr>
<td>SPE/DOE 20247</td>
<td>Physical Model Steamflood Studies Using Horizontal Wells</td>
<td>P.F. Aehner and A.H. Sufi, Amoco Production Co.</td>
</tr>
<tr>
<td>SPE/DOE 20248</td>
<td>Results and Difficulties of the World's Largest In-Situ Combustion Process: Suplacu de Barcau Field, Romania</td>
<td>A. Carcoana, North Dakota State U.</td>
</tr>
<tr>
<td>SPE/DOE 20249</td>
<td>History Matching of a Heavy-Oil Combustion Pilot in Romania</td>
<td>H.J-M. Petit, P. Le Thiez, and P. Lemonnier, Inst. Français du Pétrole</td>
</tr>
<tr>
<td>SPE/DOE 20250</td>
<td>A Comprehensive Approach to In-Situ Combustion Modeling</td>
<td>J.D.M. Belgrave, R.G. Moore, M.G. Ursenbach, and D.W. Bennion, U. of Calgary</td>
</tr>
<tr>
<td>SPE/DOE 20251</td>
<td>Improvement of Gravity Drainage by Steam Injection Into a Fissured Reservoir: An Analytical Evaluation</td>
<td>J.N.M. van Wunnik and K. Wit, Koninklijke/Shell E&P Laboratorium</td>
</tr>
<tr>
<td>SPE/DOE 20252</td>
<td>The Use of Pulsed Neutron Capture Logs To Identify Steam Breakthrough—Case Study: South Belridge Middle Expansion Steamflood Project</td>
<td>P.J. Masse and T.C. Gosney, Mobil E&P U.S. Inc., and D.L. Long, Halliburton Logging Services Inc.</td>
</tr>
<tr>
<td>SPE/DOE 20254</td>
<td>Field Studies of Microbial EOR</td>
<td>A.J. Sheehy, U. of Canberra</td>
</tr>
<tr>
<td>SPE/DOE 20256</td>
<td>Microseismic Monitoring of the Chaveroo Oil Field, New Mexico</td>
<td>J.T. Rutledge, Consultant, and J.N. Albright, Los Alamos Natl. Laboratory</td>
</tr>
</tbody>
</table>

This paper was withdrawn during printing at the request of the authors.
<table>
<thead>
<tr>
<th>Conference Paper ID</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPE/DOE 20258</td>
<td>A New Recovery Technique for Heavy Oil Reservoirs With Bottomwater</td>
<td>M.R. Islam, Emeritec Developments Inc., and A. Chakma, U. of Calgary</td>
<td>823</td>
</tr>
<tr>
<td>SPE/DOE 20260</td>
<td>Field Measurements of Remaining Oil Saturation</td>
<td>E. Causin, AGIP Spa/Lach; J. Rochon, Elf Aquitaine (P); and D. Marzorati, AGIP Spa/Gise</td>
<td>847</td>
</tr>
<tr>
<td>SPE/DOE 20263</td>
<td>Characterization of Crude Oil Wetting Behavior by Adhesion Tests</td>
<td>J.S. Buckley and N.R. Morrow, New Mexico Petroleum Recovery Research Center</td>
<td>871</td>
</tr>
<tr>
<td>SPE/DOE 20264</td>
<td>Capillary Number Relations for Some North Sea Reservoir Sandstones</td>
<td>J.M. Garmes, A.M. Mathisen, A. Scheie, and A. Skauge, Norsk Hydro</td>
<td>879</td>
</tr>
<tr>
<td>SPE/DOE 20265</td>
<td>A Model for Small-Scale Permeability Measurement With Applications to Reservoir Characterization</td>
<td>J.L. Jensen, Heriot-Watt U.</td>
<td>891</td>
</tr>
<tr>
<td>SPE/DOE 20266</td>
<td>Experimental and Theoretical Determination of Residual Saturations After a Water-Driven Carbon Dioxide Flood</td>
<td>M.D. Deo, U. of Utah, and H.A. Deans, U. of Wyoming</td>
<td>901</td>
</tr>
<tr>
<td>SPE/DOE 20267</td>
<td>An Evaluation of Cubic Equations of State for Phase Behavior Calculations Near Miscibility Conditions</td>
<td>A. Danesh, Dong-Hai Xu, and A.C. Todd, Heriot-Watt U.</td>
<td>915</td>
</tr>
<tr>
<td>SPE/DOE 20268</td>
<td>Design and Results of a Shallow, Light Oilfield-Wide Application of CO₂ Huff ‘n’ Puff Process</td>
<td>B.J. Miller, Bretagne</td>
<td>925</td>
</tr>
<tr>
<td>SPE/DOE 20269</td>
<td>A Flue Gas Huff ‘n’ Puff Process for Oil Recovery From Shallow Formations</td>
<td>H.R. Johnson, D.L. Schmidt, and L.D. Thrash, Consultants to ICF Resources Inc.</td>
<td>933</td>
</tr>
<tr>
<td>SPE/DOE 20270</td>
<td>Overview of Gelled Polymer Projects Conducted in Central Kansas</td>
<td>L.M. Jack, Murfin Drilling Co., and L.G. Schoeling and D.W. Green, U. of Kansas</td>
<td>941</td>
</tr>
<tr>
<td>SPE/DOE 20271</td>
<td>Waterflooding the Minnelusa With Aluminum Citrate Gelled Polymer, Powder River Basin, Wyoming</td>
<td>W.A. King, Apache Corp.</td>
<td>942</td>
</tr>
<tr>
<td>SPE/DOE 20288</td>
<td>Operating EOR Projects: The Experience of an Independent Energy Company</td>
<td>F.D. Covey and F.F. Craig III, Mitchell Energy Corp.</td>
<td>943</td>
</tr>
<tr>
<td>SPE/DOE 20289</td>
<td>Sewer Water: An Alternate Water Source for a CO₂ EOR Project</td>
<td>W.A. Flanders, Transpetco Engineering, and N. Grahmann and G. Green, Champion Chemical Co.</td>
<td>944</td>
</tr>
</tbody>
</table>