Superconductor Materials Science
Metallurgy, Fabrication, and Applications

Edited by
Simon Foner
Francis Bitter National Magnet Laboratory
and Plasma Fusion Center, M.I.T.
Cambridge, Massachusetts

and

Brian B. Schwartz
Department of Physics
Brooklyn College of The City University of New York
Brooklyn, New York

and

Francis Bitter National Magnet Laboratory
and Plasma Fusion Center, M.I.T.
Cambridge, Massachusetts

PLENUM PRESS • NEW YORK AND LONDON
Published in cooperation with NATO Scientific Affairs Division
CONTENTS

CHAPTER 1 OVERVIEW OF SUPERCONDUCTING MATERIALS DEVELOPMENT
J. K. Hulm and B. T. Matthias

I. INTRODUCTION 1

II. SUPERCONDUCTING MATERIALS OF THE FIRST KIND 3
 A. Discovery 3
 B. Magnetic Properties 3
 C. Flux Penetration 8
 D. Nature of the Superconducting Transition 9
 1. Bulk phase transition 11
 2. Thin film phase transition 11
 E. The Two Fluid Model 13
 F. The Microscopic Theory 14

III. SUPERCONDUCTING ALLOYS AND COMPOUNDS, EARLY WORK 16
 A. Introduction 16
 B. Critical Temperature Behavior 18
 C. Magnetic Field Behavior 21

IV. RAISING Tc WITH NEW MATERIALS 27
 A. Introduction 27
 B. Transition Metal Alloys 30
 C. Carbides and Nitrides 35
 D. A15 Compounds 37
 1. Progress in raising Tc 37
 2. Present Tc situation 39
 3. Factors depressing Tc 41
 4. Other features of A15 behavior 43

V. SUPERCONDUCTORS OF THE SECOND KIND 44
CHAPTER 2 PRACTICAL SUPERCONDUCTING MATERIALS
M.N. Wilson

I. INTRODUCTION 63
 A. Practical Applications of Superconducting Materials 63
 B. Superconducting Materials in Common Use 65
 C. Problems in the Utilization of Superconducting Materials 67

II. STABILITY: THE GENERAL PROBLEM 68
 A. Degradation and Training 68
 B. The Disturbance Spectrum 69
 C. Mechanical Sources of Disturbance 70
 D. Distributed Disturbances 71
 E. Point Disturbances 71
 F. Composite Conductors 73

III. FLUX JUMPING 74
 A. General 74
 B. Screening Currents and the Critical State Model 74
 C. Adiabatic Theory of Flux Jumping 76
 D. Filamentary Composites 78
 E. Dynamic Stability 82
 F. Dynamic Stability with Finite Superconductor Thickness 84

IV. CRYOGENIC STABILIZATION 87
 A. Size Effects 87
 B. Principles of Cryogenic Stabilization 88
CONTENTS

C. Boiling Heat Transfer 90
D. Resistivity of the Normal Metal 90
E. Heat Conduction Effects 92
F. Effect of Finite Superconductor Size 95
G. Forced Flow Cooling 96
H. Superfluid Helium 100
I. Cryogenic Stabilization in Practice 100

V. AC LOSSES 102
A. The Fundamental Loss Mechanism 102
B. Hysteresis Loss 104
C. Hysteresis Loss with Transport Current 108
D. Filamentary Composites 110
E. Self-Field Losses in Filamentary Composites 114
F. Longitudinal Field Effects 116
G. Combined Losses 119

VI. QUENCHING AND PROTECTION 119
A. The General Problem 119
B. Temperature Rise 120
C. Voltage 122
D. Self-Protecting Magnets 122
E. Other Protection Techniques 123

VII. MEASUREMENT TECHNIQUES 124
A. General 124
B. Measurement of Critical Transport Current 124
C. Measurement of Magnetization 127
D. Measurement at Different Temperatures 130

CHAPTER 3 NIOBIUM-TITANIUM SUPERCONDUCTING MATERIALS
D.C. Larbalestier

I. INTRODUCTION 133

II. METALLURGICAL AND STRUCTURAL PROPERTIES 134
A. Phases of the Niobium-Titanium System 136
B. Cold-Worked Microstructures 139
C. Elastic and Plastic Mechanical Behavior 152
D. Metallurgical Properties of Related Systems 157

III. PHYSICAL PROPERTIES 159

IV. SUPERCONDUCTING PROPERTIES 162
CHAPTER 4
METALLURGY OF CONTINUOUS
FILAMENTARY A15 SUPERCONDUCTORS
M. Suenaga

I. INTRODUCTION

II. HISTORY OF THE "BRONZE PROCESS"
A. Early History
B. Evolution of the Process
 1. The Ta diffusion barrier
 2. The external diffusion process
 3. The internal tin diffusion process
 4. Bronze in Nb tubing
 5. WRAP process
 6. Other modifications

III. METALLURGICAL PRINCIPLES
A. Thermodynamic Considerations
B. Kinetics
 1. Growth mechanisms
 2. Experimental results

IV. INFLUENCE OF METALLURGICAL FACTORS
 ON SUPERCONDUCTING PROPERTIES
A. Strains in Composite Superconductors and
 Their Influence on the Superconducting
 Properties
CONTENTS

B. Critical Temperatures 238
 1. Effects of heat treatments 238
 2. Effects of additives 242
C. Critical-Current Densities and Magnetic Fields 246
 1. Flux pinning (the scaling law) 246
 2. Temperature dependence 256
 3. Grain size dependence 258
 4. Effects of heat treatments and alloying 261
 5. What is required for high J_c? 266

V. FUTURE DIRECTIONS

CHAPTER 5 FABRICATION TECHNOLOGY OF SUPERCONDUCTING MATERIAL
H. Hillmann

I. INTRODUCTION 275

II. TECHNOLOGY OF SOLID SOLUTION SUPERCONDUCTORS 276

 A. Basic Properties of NbTi Alloys 276
 B. The influence of thermal treatment in the region of 873 K 285
 C. Mechanical Properties of NbTi Alloys 288
 D. Stress-Strain Behavior at Elevated Temperatures 292
 E. Raw Materials and Melting of NbTi 292
 F. Melting NbTi Alloys 292
 G. Sources of Inhomogeneities and Imperfections in the Molten Ingots 295
 H. Conductors and Fabrication Parameters 299
 I. Extrusion Technology 302
 1. Extrusion billets and sealing techniques for single and multiextrusion 302
 2. Extrusion presses and extrusion parameters 304
 3. Extrusion temperature and preheating 311
 4. Extrusion ram speed 311
 5. Conductors containing mixed substrate 313
 J. Drawing Machinery, Twisting and Current Optimization 313
 K. Current Density Optimization and Properties of Monolithic Filamentary Conductors 317
 L. The Anisotropy of Rectangularly-Shaped Conductors 323
 M. Occurrence of the Ti$_2$Cu-Phase 328
III. A15 SOLID SOLUTION CONDUCTORS 333

A. Basic Properties of Nb₃Sn and V₃Ga 333
B. Principles of Solid State Diffusion 337
C. Fabrication of the Conductors and Technology of High Sn-Content Bronzes 340
D. Conductor Optimization with Respect to Layer Growth, Recrystallization, Kirkendall Effect, Filament Diameter and Filament Distribution 345
E. Influence of Mechanical Strain on Electrical Properties 350
F. Remarks About the Measurement of Critical Current Density of Technical Conductors 360
G. Stabilization and Examples of Technical Conductors 362

IV. CONDUCTOR ASSEMBLY BY BRAIDING, CABLING, MECHANICAL STRENGTHENING AND ADDING STABILIZERS 364

A. Technical Production of Flattened Cables and Braids 364
B. Hollow Conductors and Fabrication Principles 368
C. Fabrication of High Current, High Strength Hollow Conductors 375
 1. Strands 379
 2. Cr-Ni core with Kapton insulation 379
 3. Cabling and Soldering 379
 4. Strip for the conduit 379
 5. Conductor completion 379

V. FUTURE DIRECTIONS 381

A. Solid Solution Superconductors 381
B. A15 Superconductors 383

CHAPTER 6 ALTERNATIVE FABRICATION TECHNOLOGIES FOR A15 MULTIFILAMENTARY SUPERCONDUCTORS
R. Roberge 389

1. INTRODUCTION 389

II. CONVENTIONAL PROCESS MECHANICAL ASSEMBLY 390

A. Historical Note 390
B. Nb₃Sn Technology 390
C. Status 393
D. Need for Alternate Technologies 394

III. IN SITU SOLIDIFICATION 394

A. Introduction 394
B. The Natural Dispersion of the Superconductor 395
 1. Phase diagram, solidification process 395
 2. Melting and casting techniques 399
C. Transformation into a Filamentary Superconductor 404
 1. Mechanical deformation 404
 2. Tin addition 404
 3. Diffusion and reaction heat-treatment 407
D. Superconducting Properties 411
 1. Overall Jₑ of Cu-Nb 411
 2. Overall Jₑ of Cu-Sn wires 411
 3. Overall Jₑ of Cu-Nb-Sn versus Nb concentration 414
 4. Overall Jₑ of Cu-V-Ga 414
E. Mechanical Properties 417
 1. Mechanical properties of Cu-Nb-Sn 417
 2. Pre-stress model 417
 3. Mechanical properties of Cu-V-Ga 420
F. Experimental Observations on Connectivity 422
 1. Random distribution 422
 2. Filament geometry 423
 3. Acid test 427
 4. Unified percolation-proximity 430
G. Research in Progress 430
H. Scale-up Technologies 431

IV. POWDER METALLURGY 431

A. Introduction 431
B. Cold Process 432
 1. Experimental technique 432
 2. Materials selection 432
 3. Results 434
 4. Potential 437
 5. Research in progress 437
C. Hot Process 440
 1. Experimental technique 440
 2. Results 440
 3. Potential 440
D. Infiltration Process 442
 1. Experimental technique 442
 2. Results 442
CHAPTER 7 MECHANICAL PROPERTIES AND STRAIN EFFECTS IN SUPERCONDUCTORS
J. W. Ekin

I. INTRODUCTION

A. Sources of Mechanical Loads in Magnets
 1. During fabrication
 2. Differential thermal contraction
 3. The Lorentz force

B. Mechanical Properties of Superconductors

II. STRESS-STRAIN CHARACTERISTICS

A. Micromechanical Model
B. Stress-Strain Characteristics for Practical Conductors

III. EFFECT OF UNIAXIAL STRAIN ON J_c, H_{c2}, and T_c

A. Mechanical-Electrical Interaction
B. $J_c-\varepsilon$ Characteristics for Practical Superconductors
 1. Multifilamentary NbTi
 2. Multifilamentary Nb$_3$Sn
 3. Multifilamentary V$_3$Ga
 4. CVD Nb$_3$Ge tape
C. Strain Scaling Law - Prediction of $J_c(B,\varepsilon)$
 1. Scaling of pinning force curves
 2. Strain scaling law
 3. Application to practical multifilamentary Nb$_3$Sn conductors
D. General Scaling Law - Prediction of $J_c(T, B, \varepsilon)$
E. Uniaxial-Strain Criterion for Magnet Design
CONTENTS

IV. BENDING STRAIN

A. Effect of Bending on \(J_c \) 484
B. Prediction of Bending-Strain Degradation from Uniaxial-Strain Measurements 486
 1. Long twist pitch 486
 2. Short twist pitch 487
 3. Application 489
C. Bending Strain Limits for Magnet Design 490
D. Methods for Minimizing Bending Degradation 492
 1. Cabling 492
 2. Wind-and-react magnet fabrication 494

V. FATIGUE 495

A. Matrix Degradation 495
 1. NbTi 495
 2. Nb\(_3\)Sn 497
B. Micromechanical Model 497

VI. TRAINING 500

A. Stress-Relief Model 501
B. Materials 501
C. Techniques for Minimizing Training 502
 1. Crack arrestors 502
 2. Bond breakage and friction 504
 3. Programmed winding tension 504
 4. Magnet shakedown without quenching 504

VII. SUMMARY AND FUTURE RESEARCH NEEDS 505

A. Summary of Material Strain Limits for Magnet Design 505
B. Future Research Areas 505

CHAPTER 8 PHASE DIAGRAMS OF SUPERCONDUCTING MATERIALS
R. Flükiger

I. INTRODUCTION 511

II. EXPERIMENTAL DETERMINATION OF HIGH TEMPERATURE PHASE DIAGRAMS 512

A. Sample Preparation 513
 1. Arc melting 513
 2. r.f. melting in water-cooled crucibles 514
3. r.f. melting in graphite or ceramic crucibles 514
4. Levitation melting 516
5. Other melting techniques 516
B. Homogenization Heat Treatments 516
C. Direct Observation Methods 520
1. Differential thermal analysis (DTA) 520
2. Thermal analysis on levitating samples (LTA) 522
3. Electrical resistivity at high temperatures 526
D. Indirect Observation Methods 528
1. Simultaneous stepwise heating 528
2. Splat cooling of liquid samples 529
3. Argon jet quenching on solid samples 529
4. Superconducting "memory" 530

III. DETERMINATION OF PHASE DIAGRAMS BELOW 300 K 532
A. Factors Influencing the Superconducting Data 532
1. Ordering effects 532
2. Shielding effects 535
B. Low Temperature Specific Heat 536
1. Calorimetric detection of shielding effects 536
2. Shielding in multifilamentary Cu-Nb3Sn wires 539
3. Calorimetric observation of low temperature phase transitions 539
C. Electrical Resistivity Below 300 K 544

IV. CRITERIA FOR PHASE STABILITY AND SUPERCONDUCTIVITY 544
A. The Brewer Plots 544
1. Does Au behave like a transition element? 547
2. The relative stability of intermetallic phases 547
3. The A15 phase 548
B. Criteria for Superconductivity 550

V. PHASE FIELDS AND SUPERCONDUCTIVITY IN BINARY "ELECTRON COMPOUNDS" 554
A. The hcp Structure (A3 type) 554
B. The A2 Compounds 554
C. "Atypical" A15 Compounds 556
1. The V-(Re, Os, Ir, Pt, Au) system 556
2. The electronic structure of electron compounds: the two-band model 558
3. The Nb-(Os, Ir, Pt, Au) system 560
4. The Cr-(Os, Re, Pt) system 562
5. The Mo-(Re, Os, Ir, Pt) system 562
6. The Ti-system 563
7. Characterization of "atypical" A15 compounds 563

VI. PHASE FIELDS AND SUPERCONDUCTIVITY IN BINARY
AND PSEUDOBINARY "TYPICAL" A15 COMPOUNDS 566

A. The V₃Au and Nb₃Au systems 566
B. The Systems V₃B (B = Ga, Si, Ge, "Al", and Sn) 567
 1. V₃Ga 567
 2. V₃Si and the martensitic transformation 567
 3. V₃Ge 569
 4. "V₃Al" 569
 5. V₃Sn 572
C. V₃-Based Pseudobinary Compounds 572
 1. V₃(Au₁₋ₓPtₓ) 572
 2. V₃₀.₇₅(Ga₁₋ₓSix) 574
D. Nb₃B (B = Ge, Ga, Al, Sn, and Sb) 574
 1. Nb-Ge 574
 2. Nb-Ga 578
 3. Nb-Al 578
 4. Nb₃Sn 578
 5. Nb₃Sb 579
E. Nb-Based Pseudobinary Compounds 579
 1. Nb₃(Au₁₋ₓPtₓ) 579
 2. Nb₃(Al₁₋ₓSix) (B = Ge, Si, Ga, Be, B, As, ...) 581
F. Mo-Based Binaries and Ternaries 581
 1. Mo₃Ge and Mo₃Si 581
 2. Mo₃(Ge₁₋ₓSix) 581
G. General Correlations for A15 Compounds 581
 1. The superconducting transition temperature 583
 2. Electronic specific heat 583
 3. Type of formation of A15 compounds 583
 4. Variation of the lattice parameter in Nb-based A15-type compounds 586

VII. PHASE FIELDS AND SUPERCONDUCTIVITY IN
RHOMBOHEDRAL Mo CHALCOGENIDES
(CHEVREL PHASES) 587
CHAPTER 9

JOSEPHSON JUNCTION ELECTRONICS:
MATERIALS ISSUES AND FABRICATION
TECHNIQUES

M.R. Beasley and C.J. Kircher

I. INTRODUCTION 605

II. DEVICE PRINCIPLES AND MATERIALS REQUIREMENTS 607

A. Josephson Junctions: Tunnel Junctions and Weak-Link Devices 607
 1. Tunnel junctions 608
 2. Weak-link microbridge Josephson junctions 613

B. Other Circuit Elements 616

C. Summary of Superconducting Device and Material Parameters of Importance 618

III. INTEGRATED CIRCUIT FABRICATION 618

A. Junctions with Pb-alloy Electrodes 618
 1. Integrated circuit fabrication 618
 2. Pb-alloy electrode materials 627
 3. Tunnel barrier 631

B. Junctions with Niobium Electrodes 633

C. Comparing Junctions with Nb and Pb-Alloy Electrodes 636

IV. STABILITY OF FILMS AND DEVICES DURING CYCLING BETWEEN 350 K AND 4.2 K 638

A. Origin of the Cycling Problem 638

B. Strain Relaxation Mechanisms 641

C. Film and Device Stability 643

D. Choosing a Material for Mechanical Stability 645

V. ELECTRON TUNNELING AND TUNNEL BARRIER FORMATION 646
CHAPTER 10 CHEVREL PHASE
HIGH FIELD SUPERCONDUCTORS
R. Chevrel

I. INTRODUCTION 685

II. CHEMISTRY AND STRUCTURE 685
 A. Preparation 685
 B. Chemistry 686
 C. Structure 690

III. PHYSICAL PROPERTIES 697
 A. Superconducting Temperatures 697
 1. Lattice properties, phonons 697
 2. Electronic properties, charge transfer 699
 B. Upper Critical Fields 704
 C. Magnetism, Coexistence of Magnetism and Superconductivity 706
 D. Critical Currents and Applications 707

IV. NEW MATERIALS PROCEEDING FROM THE LINEAR CONDENSATION OF THE OCTAHEDRAL Mo6 CLUSTERS 710
 A. In₃Mo₃₀Se₃₉ Containing Mo₆ and Mo₉ clusters 710
 B. M₂Mo₁₅Se₁₉(M = K, Ba, In, Tl) and M₂Mo₁₅S₁₉ (M = K, Rb, Cs) containing Mo₆ and Mo₉ clusters 712
CHAPTER 11SUPERCONDUCTING PROXIMITY EFFECT FOR IN SITU AND MODEL LAYERED SYSTEMS
D.K. Finnemore

I. MODEL SYSTEMS

II. BOUNDARY CONDITIONS AT THE SUPERCONDUCTING-NORMAL INTERFACE
 A. Electron Tunneling
 B. Thermal Conductivity

III. PHONON SPECTRAL FUNCTION, $\alpha^2 F(\omega)$

IV. SUPERCURRENTS THROUGH NORMAL BARRIERS
 A. Thickness Dependence
 B. Temperature Dependence
 C. Magnetic Field Dependence

V. FLUX ENTRY FIELDS

VI. IMPLICATIONS FOR IN SITU COMPOSITES

CHAPTER 12AMORPHOUS SUPERCONDUCTORS
C.C. Tsuei

I. INTRODUCTION
 A. Preparation Techniques
 B. Structural Properties
 C. The Anderson Theorem

II. SYSTEMATICS OF T_c
 A. Non-transition Metals
 B. Transition Metals

III. ELECTRON-PHONON INTERACTION
CONTENTS

A. The Ratio of Energy Gap to Transition Temperature \(\frac{2\Delta(0)}{k_B T_c} \) 743
B. \(\alpha^2F(\omega) \) and \(\lambda \) 745
C. Origins of Strong Electron-Photon Interaction
 1. Amorphous non-TM superconductors 748
 2. A15 superconductors 748

IV. CRITICAL FIELDS 750
 A. The Upper and Lower Critical Fields 750
 B. The Temperature Coefficient of Critical Fields 751

V. POTENTIAL APPLICATIONS 753
 A. High Field Magnets 753
 B. Josephson Junctions 754

CHAPTER 13 REVIEWS OF LARGE SUPERCONDUCTING MACHINES
G. Bogner

I. INTRODUCTION 757
II. TECHNICAL SUPERCONDUCTORS 757
III. SUPERCONDUCTING MAGNETS FOR HIGH ENERGY PHYSICS 758
IV. LEVITATED TRAINS-ELECTRODYNAMIC LEVITATION SYSTEM 761
V. SUPERCONDUCTING COILS FOR MAGNETIC SEPARATION 766
VI. ROTATING MACHINERY WITH SUPERCONDUCTING WINDINGS 770
 A. Generators 770
 B. DC Machines 775
VII. SUPERCONDUCTING HIGH POWER CABLES 779
VIII. SUPERCONDUCTING SWITCHES 782
IX. MAGNET SYSTEMS FOR FUSION REACTORS 785
X. SUPERCONDUCTING MAGNETS FOR MHD PLANTS 796
XI. SUPERCONDUCTING MAGNET ENERGY STORAGE (SME STORAGE) 801
CHAPTER 14 SUPERCONDUCTIVITY IN CANADA
R. Roberge 809

CHAPTER 15 RESEARCH ACTIVITIES IN
SUPERCONDUCTIVITY IN CHINA
C.-G. Cui and C.-Y. Pang

I. INTRODUCTION 813
II. BACKGROUND 813
III. SUPERCONDUCTING MATERIALS 814
 A. NbTi 814
 B. Nb₃Sn 816
 C. V₃Ga 817
 D. New Materials 817
IV. SUPERCONDUCTING MAGNET SYSTEMS 817
 A. Laboratory Magnets 817
 B. High Energy Physics 820
 C. Controlled Thermonuclear Reaction Technology 820
 D. Superconducting Machines 822
 E. Magnetic 822
 F. Other Applications 824
V. JOSEPHSON JUNCTION DEVICES 824
 A. Voltage Standard 824
 B. Magnetometer 825
 C. High Frequency Devices 825

CHAPTER 16 EUROPEAN EFFORTS ON
SUPERCONDUCTING MATERIALS
H.C. Freyhardt 827

CHAPTER 17 REVIEW OF NATIONAL EFFORTS IN
MIDDLE EUROPE
H.R. Kirchmayr

I. INTRODUCTION 837
II. AUSTRIA AND SWITZERLAND 837
CONTENTS

A. Members in Switzerland 837
B. Expenditures Within COST-action 56 in Switzerland 838
 1. First phase of the COST-action 56 (1977-1979) 838
C. Projects in Switzerland 839
D. Members in Austria 840
E. Funding Level in Austria 841
F. Projects in Austria 841

III. CZECHOSLOVAKIA 843

IV. GDR (GERMAN DEMOCRATIC REPUBLIC) 844

V. HUNGARY 844

VI. POLAND 844

CHAPTER 18
RECENT DEVELOPMENTS IN HIGH-FIELD SUPERCONDUCTORS IN JAPAN
K. Tachikawa

I. INTRODUCTION 847

II. THE DEVELOPMENT OF V₃Ga 847
 A. Surface Diffusion Process 847
 B. Composite Diffusion Process 849

III. IMPROVEMENTS IN HIGH-FIELD CURRENT-CARRYING CAPACITIES OF COMPOSITE-PROCESSED A15 SUPERCONDUCTORS 849

IV. SUPERCONDUCTING AND MECHANICAL PROPERTIES OF THE IN SITU PROCESSED V₃Ga 852

V. DEVELOPMENTS IN THE V₂Hf-BASE C-15 TYPE SUPERCONDUCTORS 855

VI. DEVELOPMENTS OF MULTIFILAMENTARY A15 CONDUCTORS IN JAPANESE RESEARCH GROUPS OTHER THAN NRIM 858

CHAPTER 19
PROGRAMS ON SUPERCONDUCTING MATERIALS AND MINIATURE CRYOCOOLERS IN THE UNITED STATES
R. Brandt, M. Nisenoff and E. Edelsack
CHAPTER 20 LARGE-SCALE APPLICATIONS OF SUPERCONDUCTIVITY IN THE UNITED STATES: AN OVERVIEW

R.A. Hein and D.U. Gubser

I. INTRODUCTION

II. LOW FIELD REGIME (H < 2T)

A. General Remarks
B. Power Transmission Lines
1. General Remarks
2. Superconducting AC power transmission lines (SPTL)
3. Superconducting DC power transmission lines
C. RF Cavities for Particle Accelerators

III. INTERMEDIATE FIELD REGIME (2 < H < 5T)

A. General Remarks
B. Magnets for High Energy Physics (HEP)
C. Rotating Electrical Machines
1. DC acyclic (homopolar) motors
2. AC machines (generators)
D. Energy Storage Magnets
CONTENTS

IV. HIGH FIELD REGIME ($H > 5T$)
 A. General Remarks
 B. Magnetohydrodynamics (MHD)
 C. Magnetically Confined Fusion

V. SUPERCONDUCTING MATERIALS

VI. HELIUM CONSERVATION

VII. MISCELLANEOUS APPLICATIONS
 A. Electromagnetic Launchers
 B. Magnetic Separation

CHAPTER 21
REPORTS ON SOME SUPERCONDUCTING MATERIALS COMPANIES IN THE UNITED STATES

I. AIRCO, INC., CARTERET, NEW JERSEY 07008
 A. Introduction
 B. Materials Fabrication

II. INTERMAGNETICS GENERAL CORPORATION, WATERBURY, CONNECTICUT AND GUILDERLAND, NEW YORK.
 A. Introduction
 B. Manufactured Materials
 1. Ductile alloy superconductors
 2. A15 superconductors
 3. External bronze process
 C. Conclusions

III. SUPERCON, INC.
 A. Introduction
 B. High Field Superconductors

IV. TELEDYNE WAH CHANG CO., ALBANY, OREGON
 A. Introduction
 B. Material Supply and Manufacturing

INDEX