CHEMISTRY AND CHEMICAL ENGINEERING OF CATALYTIC PROCESSES

edited by

ROEL PRINS
Professor of Inorganic Chemistry and Catalysis
Eindhoven University of Technology
Eindhoven, The Netherlands

and

GEORGE C. A. SCHUIT
Professor of Inorganic Chemistry and Catalysis
Eindhoven University of Technology
Eindhoven, The Netherlands
Department of Chemical Engineering
University of Delaware, Newark, USA

SIJTHOFF & NOORDHOFF 1980
Alphen aan den Rijn, The Netherlands
Germantown, Maryland, USA
TABLE OF CONTENTS

Part I. General introduction to chemical engineering 1

J.R. Katzer
Chemical kinetics. The first step to reaction modeling and reaction engineering 3

J.R. Katzer
Mass transfer in reacting systems 49

G.F. Froment
Fixed bed catalytic reactors 115

Part II. Catalytic cracking 135

D.M. Brouwer
Reactions of alkylcarbenium ions in relation to isomerization and cracking of hydrocarbons 137

J.H.C. van Hooff
Cracking catalysts 161

P.N. Rowe
Basic fluidisation 181

P.N. Rowe
Fluidisation of fine powders such as fcc 203

H.S. van der Baan
Catcracker operations. Reaction network and kinetics 217

Part III. Reforming of hydrocarbons on metals and alloys 235

R. Prins
Chemical bonding 237

V. Ponec
Bonding in and on metals 257
G. Ertl
Surface science and catalysis on metals

R.F. Willis
Surface electron spectroscopy

W.M.H. Sachtler
Surface composition of binary alloys

H.C. de Jongste and V. Ponec
Catalysis by metals and alloys
Reforming of hydrocarbons and some other reactions

F. Garin and F.G. Gault
Skeletal isomerization of hydrocarbons on metals

H.S. van der Baan
Catalytic reforming, the reaction network

R. Prins
Modern processes for the catalytic reforming of hydrocarbons

Part IV. Homogeneous catalysis

R. Prins
Reaction mechanisms in homogeneous catalysis

B.C. Gates
Catalysis by metal clusters

B.C. Gates
Polymer supported catalysts

Part V. Partial oxidation of hydrocarbons and the acrylonitrile process

G.C.A. Schuit and B.C. Gates
Catalytic oxidation, an introduction

F.S. Stone
Oxide crystal chemistry and catalysis

J.H.C. van Hooff
Industrial catalytic partial oxidation processes

H.S. van der Baan
The acrylonitrile process
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>G.F. Froment</td>
<td>Hot spots and runaway in fixed bed tubular</td>
<td>535</td>
</tr>
<tr>
<td>J.R. Katzer</td>
<td>Catalysis in coal gasification</td>
<td>561</td>
</tr>
<tr>
<td>W.M.H. Sachtler</td>
<td>Mechanism of hydrocarbon synthesis over Fischer-Tropsch catalysts</td>
<td>563</td>
</tr>
<tr>
<td>J.H.C. van Hooff</td>
<td>The conversion of methanol to hydrocarbons using a new type of zeolite as catalyst (Mobil process)</td>
<td>583</td>
</tr>
<tr>
<td>B.C. Gates</td>
<td>Liquefied coal by hydrogenation</td>
<td>599</td>
</tr>
<tr>
<td>J.R. Katzer and R. Sivasubramanian</td>
<td>Process and catalyst needs for hydrodenitrogenation</td>
<td>621</td>
</tr>
<tr>
<td></td>
<td></td>
<td>635</td>
</tr>
</tbody>
</table>